Acronym | ... |
Name | hyperbolic s3s4o4x tesselation |
Circumradius | ... |
Vertex figure |
© |
Confer |
|
This non-compact hyperbolic tesselation uses tosquat in the sense of an infinite horohedron as one of its cell types. From the vertex figure it can be seen that even a scaliform realisation is possible.
Incidence matrix according to Dynkin symbol
s3s4o4x (N,M → ∞) demi( . . . . ) | 12NM | 2 1 4 | 1 2 3 4 2 | 1 2 1 3 ----------------+------+---------------+-----------------------+-------------- demi( . . . x ) | 2 | 12NM * * | 1 0 0 2 1 | 0 1 1 2 . s4o . | 2 | * 6NM * | 0 0 2 0 2 | 1 0 1 2 sefa( s3s . . ) | 2 | * * 24NM | 0 1 1 1 0 | 1 1 0 1 ----------------+------+---------------+-----------------------+-------------- demi( . . o4x ) | 4 | 4 0 0 | 3NM * * * * | 0 0 1 1 s3s . . | 3 | 0 0 3 | * 8NM * * * | 1 1 0 0 sefa( s3s4o . ) | 3 | 0 1 2 | * * 12NM * * | 1 0 0 1 sefa( s3s 2 x ) | 4 | 2 0 2 | * * * 12NM * | 0 1 0 1 sefa( . s4o4x ) | 8 | 4 4 0 | * * * * 3NM | 0 0 1 1 ----------------+------+---------------+-----------------------+-------------- s3s4o . ♦ 12 | 0 6 24 | 0 8 12 0 0 | NM * * * s3s 2 x ♦ 6 | 3 0 6 | 0 2 0 3 0 | * 4NM * * . s4o4x ♦ 4M | 4M 2M 0 | M 0 0 0 M | * * 3N * sefa( s3s4o4x ) ♦ 12 | 8 4 8 | 1 0 4 4 1 | * * * 3NM starting figure: x3x4o4x snubbed forms: s3s4o4s'
© 2004-2025 | top of page |