Acronym ... Name hyperbolic s3s4o4x tesselation Circumradius ... i Vertex figure ` ©`

This non-compact hyperbolic tesselation uses tosquat in the sense of an infinite horohedron as one of its cell types. From the vertex figure it can be seen that even a scaliform realisation is possible.

Incidence matrix according to Dynkin symbol

```s3s4o4x   (N,M → ∞)

demi( . . . . ) | 12NM |    2   1    4 |   1   2    3    4   2 |  1   2  1   3
----------------+------+---------------+-----------------------+--------------
demi( . . . x ) |    2 | 12NM   *    * |   1   0    0    2   1 |  0   1  1   2
. s4o .   |    2 |    * 6NM    * |   0   0    2    0   2 |  1   0  1   2
sefa( s3s . . ) |    2 |    *   * 24NM |   0   1    1    1   0 |  1   1  0   1
----------------+------+---------------+-----------------------+--------------
demi( . . o4x ) |    4 |    4   0    0 | 3NM   *    *    *   * |  0   0  1   1
s3s . .   |    3 |    0   0    3 |   * 8NM    *    *   * |  1   1  0   0
sefa( s3s4o . ) |    3 |    0   1    2 |   *   * 12NM    *   * |  1   0  0   1
sefa( s3s 2 x ) |    4 |    2   0    2 |   *   *    * 12NM   * |  0   1  0   1
sefa( . s4o4x ) |    8 |    4   4    0 |   *   *    *    * 3NM |  0   0  1   1
----------------+------+---------------+-----------------------+--------------
s3s4o .   ♦   12 |    0   6   24 |   0   8   12    0   0 | NM   *  *   *
s3s 2 x   ♦    6 |    3   0    6 |   0   2    0    3   0 |  * 4NM  *   *
. s4o4x   ♦   4M |   4M  2M    0 |   M   0    0    0   M |  *   * 3N   *
sefa( s3s4o4x ) ♦   12 |    8   4    8 |   1   0    4    4   1 |  *   *  * 3NM

starting figure: x3x4o4x
snubbed forms:  s3s4o4s'
```

 © 2004-2021 top of page