Acronym rit
Name rectified tesseract,
rectified octachoron,
birectified hexadecachoron,
runcic tesseract,
equatorial cross-section of ico-first nit
 
 ©
 
Cross sections
 ©
Circumradius sqrt(3/2) = 1.224745
Inradius
wrt. tet
3/sqrt(8) = 1.060660
Inradius
wrt. co
1/sqrt(2) = 0.707107
Vertex figure
 ©
Vertex layers
LayerSymmetrySubsymmetries
 o3o3o4o o3o3o . o3o . o o . o4o . o3o4o
1o3o3x4o o3o3x .
tet first
o3o . o
vertex first
o . x4o
{4} first
. o3x4o
co first
2 o3x3x . o3x . q
vertex figure
x . o4q . o3o4q
3 x3x3o . o3u . o u . x4o . o3x4o
opposite co
4 x3o3o .
opposite tet
x3x . q x . o4q  
5   u3o . o o . x4o
opposite {4}
6 x3o . q  
7 o3o . o
opposite vertex
 o3o3o *b3o o3o3o    . o3o . *b3o o . o    o . o3o *b3o
1x3o3x *b3o x3o3x    .
co first
x3o . *b3o
tet first
x . x    o
{4} first
. o3x *b3o
tet first
2a o3o3u    . x3x . *b3o q . o    x . x3x *b3o
2b u3o3o    . o . q    x
3 x3o3x    .
opposite co
o3x . *b3x x . x    u . x3o *b3x
4a   o3o . *b3x
opposite tet
q . o    x . o3o *b3x
opposite tet
4b o . q    x
5   x . x    o
opposite {4}
 
Lace city
in approx. ASCII-art
 ©  
x4o o4q x4o		-- o3x4o (co)
           
o4q     o4q		-- o3o4q (q-cube)
           
x4o o4q x4o		-- o3x4o (co)
  x3o x3x o3x  		-- o3x4o (co)
               
o3o u3o o3u o3o		-- o3o4q (q-cube)
               
  x3o x3x o3x  		-- o3x4o (co)

     \   \   \   \
      \   \   \   +-- x3o3o (tet)
       \   \   +----- x3x3o (tut)
        \   +-------- o3x3x (inv. tut)
         +----------- o3o3x (dual tet)
Coordinates
  1. (1/sqrt(2), 1/sqrt(2), 1/sqrt(2), 0)                 & all permutations, all changes of sign
    : rit in tessic orientation
  2. (3/sqrt(8), 1/sqrt(8), 1/sqrt(8), 1/sqrt(8))     & all permutations, all even changes of sign
    : rit in demitessic orientation
Volume 23/6 = 3.833333
Surface 44 sqrt(2)/3 = 20.741799
General of army (is itself convex)
Colonel of regiment (is itself locally convex – uniform polychoral members:
by cells: cho co oho tet tut
gotto 80088
rit 080160
hinnit 080016
sto 00888
firt 0001616
)
Dual o4m3o3o
Dihedral angles
(at margins)
  • at {3} between co and tet:   120°
  • at {4} between co and co:   90°
Face vector 32, 96, 88, 24
Confer
Grünbaumian relatives:
2rit+64tet  
segmentochora:
tetatut   tuta  
related CRFs:
mibdirit  
ambification:
rerit  
ambification pre-image:
tes  
general polytopal classes:
Wythoffian polychora   partial Stott expansions   bistratic lace towers   lace simplices  
analogs:
rectified hypercube rCn   birectified orthoplex brOn   maximal expanded demihypercube eDn  
External
links
hedrondude   wikipedia   polytopewiki   WikiChoron   quickfur

Note that rit can be thought of as the external blend of 1 hex + 16 further hexes + 24 squascs + 8 copies. This decomposition is described as the (also subdimensioanlly) degenerate segmentoteron xo3oo3ox4oo&#x.


Incidence matrix according to Dynkin symbol

o3o3x4o

. . . . | 32   6 |  6  3 |  2 3
--------+----+----+-------+-----
. . x . |  2 | 96 |  1  2 |  1 2
--------+----+----+-------+-----
. o3x . |  3 |  3 | 64  * |  1 1
. . x4o |  4 |  4 |  * 24 |  0 2
--------+----+----+-------+-----
o3o3x .   4 |  6 |  4  0 | 16 *
. o3x4o  12 | 24 |  8  6 |  * 8

snubbed forms: o3o3β4o

o3o3x4/3o

. . .   . | 32   6 |  6  3 |  2 3
----------+----+----+-------+-----
. . x   . |  2 | 96 |  1  2 |  1 2
----------+----+----+-------+-----
. o3x   . |  3 |  3 | 64  * |  1 1
. . x4/3o |  4 |  4 |  * 24 |  0 2
----------+----+----+-------+-----
o3o3x   .   4 |  6 |  4  0 | 16 *
. o3x4/3o  12 | 24 |  8  6 |  * 8

o3o3/2x4o

. .   . . | 32   6 |  6  3 |  2 3
----------+----+----+-------+-----
. .   x . |  2 | 96 |  1  2 |  1 2
----------+----+----+-------+-----
. o3/2x . |  3 |  3 | 64  * |  1 1
. .   x4o |  4 |  4 |  * 24 |  0 2
----------+----+----+-------+-----
o3o3/2x .   4 |  6 |  4  0 | 16 *
. o3/2x4o  12 | 24 |  8  6 |  * 8

o3o3/2x4/3o

. .   .   . | 32   6 |  6  3 |  2 3
------------+----+----+-------+-----
. .   x   . |  2 | 96 |  1  2 |  1 2
------------+----+----+-------+-----
. o3/2x   . |  3 |  3 | 64  * |  1 1
. .   x4/3o |  4 |  4 |  * 24 |  0 2
------------+----+----+-------+-----
o3o3/2x   .   4 |  6 |  4  0 | 16 *
. o3/2x4/3o  12 | 24 |  8  6 |  * 8

o3/2o3x4o

.   . . . | 32   6 |  6  3 |  2 3
----------+----+----+-------+-----
.   . x . |  2 | 96 |  1  2 |  1 2
----------+----+----+-------+-----
.   o3x . |  3 |  3 | 64  * |  1 1
.   . x4o |  4 |  4 |  * 24 |  0 2
----------+----+----+-------+-----
o3/2o3x .   4 |  6 |  4  0 | 16 *
.   o3x4o  12 | 24 |  8  6 |  * 8

o3/2o3x4/3o

.   . .   . | 32   6 |  6  3 |  2 3
------------+----+----+-------+-----
.   . x   . |  2 | 96 |  1  2 |  1 2
------------+----+----+-------+-----
.   o3x   . |  3 |  3 | 64  * |  1 1
.   . x4/3o |  4 |  4 |  * 24 |  0 2
------------+----+----+-------+-----
o3/2o3x   .   4 |  6 |  4  0 | 16 *
.   o3x4/3o  12 | 24 |  8  6 |  * 8

o3/2o3/2x4o

.   .   . . | 32   6 |  6  3 |  2 3
------------+----+----+-------+-----
.   .   x . |  2 | 96 |  1  2 |  1 2
------------+----+----+-------+-----
.   o3/2x . |  3 |  3 | 64  * |  1 1
.   .   x4o |  4 |  4 |  * 24 |  0 2
------------+----+----+-------+-----
o3/2o3/2x .   4 |  6 |  4  0 | 16 *
.   o3/2x4o  12 | 24 |  8  6 |  * 8

o3/2o3/2x4/3o

.   .   .   . | 32   6 |  6  3 |  2 3
--------------+----+----+-------+-----
.   .   x   . |  2 | 96 |  1  2 |  1 2
--------------+----+----+-------+-----
.   o3/2x   . |  3 |  3 | 64  * |  1 1
.   .   x4/3o |  4 |  4 |  * 24 |  0 2
--------------+----+----+-------+-----
o3/2o3/2x   .   4 |  6 |  4  0 | 16 *
.   o3/2x4/3o  12 | 24 |  8  6 |  * 8

x3o3x *b3o

. . .    . | 32   3  3 |  3  3  3 | 3 1 1
-----------+----+-------+----------+------
x . .    . |  2 | 48  * |  2  1  0 | 2 1 0
. . x    . |  2 |  * 48 |  0  1  2 | 2 0 1
-----------+----+-------+----------+------
x3o .    . |  3 |  3  0 | 32  *  * | 1 1 0
x . x    . |  4 |  2  2 |  * 24  * | 2 0 0
. o3x    . |  3 |  0  3 |  *  * 32 | 1 0 1
-----------+----+-------+----------+------
x3o3x    .  12 | 12 12 |  4  6  4 | 8 * *
x3o . *b3o   4 |  6  0 |  4  0  0 | * 8 *
. o3x *b3o   4 |  0  6 |  0  0  4 | * * 8

snubbed forms: β3o3x *b3o, β3o3β *b3o

x3o3x *b3/2o

. . .      . | 32   3  3 |  3  3  3 | 3 1 1
-------------+----+-------+----------+------
x . .      . |  2 | 48  * |  2  1  0 | 2 1 0
. . x      . |  2 |  * 48 |  0  1  2 | 2 0 1
-------------+----+-------+----------+------
x3o .      . |  3 |  3  0 | 32  *  * | 1 1 0
x . x      . |  4 |  2  2 |  * 24  * | 2 0 0
. o3x      . |  3 |  0  3 |  *  * 32 | 1 0 1
-------------+----+-------+----------+------
x3o3x      .  12 | 12 12 |  4  6  4 | 8 * *
x3o . *b3/2o   4 |  6  0 |  4  0  0 | * 8 *
. o3x *b3/2o   4 |  0  6 |  0  0  4 | * * 8

x3/2o3/2x *b3o

.   .   .    . | 32   3  3 |  3  3  3 | 3 1 1
---------------+----+-------+----------+------
x   .   .    . |  2 | 48  * |  2  1  0 | 2 1 0
.   .   x    . |  2 |  * 48 |  0  1  2 | 2 0 1
---------------+----+-------+----------+------
x3/2o   .    . |  3 |  3  0 | 32  *  * | 1 1 0
x   .   x    . |  4 |  2  2 |  * 24  * | 2 0 0
.   o3/2x    . |  3 |  0  3 |  *  * 32 | 1 0 1
---------------+----+-------+----------+------
x3/2o3/2x    .  12 | 12 12 |  4  6  4 | 8 * *
x3/2o   . *b3o   4 |  6  0 |  4  0  0 | * 8 *
.   o3/2x *b3o   4 |  0  6 |  0  0  4 | * * 8

x3/2o3/2x *b3/2o

.   .   .      . | 32   3  3 |  3  3  3 | 3 1 1
-----------------+----+-------+----------+------
x   .   .      . |  2 | 48  * |  2  1  0 | 2 1 0
.   .   x      . |  2 |  * 48 |  0  1  2 | 2 0 1
-----------------+----+-------+----------+------
x3/2o   .      . |  3 |  3  0 | 32  *  * | 1 1 0
x   .   x      . |  4 |  2  2 |  * 24  * | 2 0 0
.   o3/2x      . |  3 |  0  3 |  *  * 32 | 1 0 1
-----------------+----+-------+----------+------
x3/2o3/2x      .  12 | 12 12 |  4  6  4 | 8 * *
x3/2o   . *b3/2o   4 |  6  0 |  4  0  0 | * 8 *
.   o3/2x *b3/2o   4 |  0  6 |  0  0  4 | * * 8

s4x3o3o

demi( . . . . ) | 32   3  3 |  3  3  3 | 1 3 1
----------------+----+-------+----------+------
demi( . x . . ) |  2 | 48  * |  2  1  0 | 1 2 0
sefa( s4x . . ) |  2 |  * 48 |  0  1  2 | 0 2 1
----------------+----+-------+----------+------
demi( . x3o . ) |  3 |  3  0 | 32  *  * | 1 1 0
      s4x . .     4 |  2  2 |  * 24  * | 0 2 0
sefa( s4x3o . ) |  3 |  0  3 |  *  * 32 | 0 1 1
----------------+----+-------+----------+------
demi( . x3o3o )   4 |  6  0 |  4  0  0 | 8 * *
      s4x3o .    12 | 12 12 |  4  6  4 | * 8 *
sefa( s4x3o3o )   4 |  0  6 |  0  0  4 | * * 8

starting figure: x4x3o3o

s4o3o3x

demi( . . . . ) | 32   3  3 |  3  3  3 | 1 1 3
----------------+----+-------+----------+------
demi( . . . x ) |  2 | 48  * |  2  1  0 | 1 0 2
      s4o . .     2 |  * 48 |  0  1  2 | 0 1 2
----------------+----+-------+----------+------
demi( . . o3x ) |  3 |  3  0 | 32  *  * | 1 0 1
      s4o 2 x   |  4 |  2  2 |  * 24  * | 0 0 2
sefa( s4o3o . ) |  3 |  0  3 |  *  * 32 | 0 1 1
----------------+----+-------+----------+------
demi( . o3o3x )   4 |  6  0 |  4  0  0 | 8 * *
      s4o3o .     4 |  0  6 |  0  0  4 | * 8 *
sefa( s4o3o3x )  12 | 12 12 |  4  6  4 | * * 8

starting figure: x4o3o3x

xxoo3oxxo3ooxx&#xt   → all heights = 1/sqrt(2) = 0.707107
(tet || pseudo tut || pseudo inv tut || inv tet)

o...3o...3o...     | 4  *  * *  3  3 0  0  0  0 0  0 0 | 3 3  3 0  0  0  0 0  0 0 0 | 1 3 1 0 0 0 0
.o..3.o..3.o..     | * 12  * *  0  1 1  2  2  0 0  0 0 | 0 1  2 1  2  2  1 0  0 0 0 | 0 2 1 1 1 0 0
..o.3..o.3..o.     | *  * 12 *  0  0 0  0  2  2 1  1 0 | 0 0  0 0  1  2  2 1  2 1 0 | 0 1 0 1 2 1 0
...o3...o3...o     | *  *  * 4  0  0 0  0  0  0 0  3 3 | 0 0  0 0  0  0  0 0  3 3 3 | 0 0 0 0 3 1 1
-------------------+-----------+------------------------+----------------------------+--------------
x... .... ....     | 2  0  0 0 | 6  * *  *  *  * *  * * | 2 1  0 0  0  0  0 0  0 0 0 | 1 2 0 0 0 0 0
oo..3oo..3oo..&#x  | 1  1  0 0 | * 12 *  *  *  * *  * * | 0 1  2 0  0  0  0 0  0 0 0 | 0 2 1 0 0 0 0
.x.. .... ....     | 0  2  0 0 | *  * 6  *  *  * *  * * | 0 1  0 0  2  0  0 0  0 0 0 | 0 2 0 1 0 0 0
.... .x.. ....     | 0  2  0 0 | *  * * 12  *  * *  * * | 0 0  1 1  0  1  0 0  0 0 0 | 0 1 1 0 1 0 0
.oo.3.oo.3.oo.&#x  | 0  1  1 0 | *  * *  * 24  * *  * * | 0 0  0 0  1  1  1 0  0 0 0 | 0 1 0 1 1 0 0
.... ..x. ....     | 0  0  2 0 | *  * *  *  * 12 *  * * | 0 0  0 0  0  1  0 1  1 0 0 | 0 1 0 0 1 1 0
.... .... ..x.     | 0  0  2 0 | *  * *  *  *  * 6  * * | 0 0  0 0  0  0  2 0  0 1 0 | 0 0 0 1 2 0 0
..oo3..oo3..oo&#x  | 0  0  1 1 | *  * *  *  *  * * 12 * | 0 0  0 0  0  0  0 0  2 1 0 | 0 0 0 0 2 1 0
.... .... ...x     | 0  0  0 2 | *  * *  *  *  * *  * 6 | 0 0  0 0  0  0  0 0  0 1 2 | 0 0 0 0 2 0 1
-------------------+-----------+------------------------+----------------------------+--------------
x...3o... ....     | 3  0  0 0 | 3  0 0  0  0  0 0  0 0 | 4 *  * *  *  *  * *  * * * | 1 1 0 0 0 0 0
xx.. .... ....&#x  | 2  2  0 0 | 1  2 1  0  0  0 0  0 0 | * 6  * *  *  *  * *  * * * | 0 2 0 0 0 0 0
.... ox.. ....&#x  | 1  2  0 0 | 0  2 0  1  0  0 0  0 0 | * * 12 *  *  *  * *  * * * | 0 1 1 0 0 0 0
.... .x..3.o..     | 0  3  0 0 | 0  0 0  3  0  0 0  0 0 | * *  * 4  *  *  * *  * * * | 0 0 1 0 1 0 0
.xo. .... ....&#x  | 0  2  1 0 | 0  0 1  0  2  0 0  0 0 | * *  * * 12  *  * *  * * * | 0 1 0 1 0 0 0
.... .xx. ....&#x  | 0  2  2 0 | 0  0 0  1  2  1 0  0 0 | * *  * *  * 12  * *  * * * | 0 1 0 0 1 0 0
.... .... .ox.&#x  | 0  1  2 0 | 0  0 0  0  2  0 1  0 0 | * *  * *  *  * 12 *  * * * | 0 0 0 1 1 0 0
..o.3..x. ....     | 0  0  3 0 | 0  0 0  0  0  3 0  0 0 | * *  * *  *  *  * 4  * * * | 0 1 0 0 0 1 0
.... ..xo ....&#x  | 0  0  2 1 | 0  0 0  0  0  1 0  2 0 | * *  * *  *  *  * * 12 * * | 0 0 0 0 1 1 0
.... .... ..xx&#x  | 0  0  2 2 | 0  0 0  0  0  0 1  2 1 | * *  * *  *  *  * *  * 6 * | 0 0 0 0 2 0 0
.... ...o3...x     | 0  0  0 3 | 0  0 0  0  0  0 0  0 3 | * *  * *  *  *  * *  * * 4 | 0 0 0 0 1 0 1
-------------------+-----------+------------------------+----------------------------+--------------
x...3o...3o...      4  0  0 0 | 6  0 0  0  0  0 0  0 0 | 4 0  0 0  0  0  0 0  0 0 0 | 1 * * * * * *
xxo.3oxx. ....&#xt  3  6  3 0 | 3  6 3  3  6  3 0  0 0 | 1 3  3 0  3  3  0 1  0 0 0 | * 4 * * * * *
.... ox..3oo..&#x   1  3  0 0 | 0  3 0  3  0  0 0  0 0 | 0 0  3 1  0  0  0 0  0 0 0 | * * 4 * * * *
.xo. .... .ox.&#x   0  2  2 0 | 0  0 1  0  4  0 1  0 0 | 0 0  0 0  2  0  2 0  0 0 0 | * * * 6 * * *
.... .xxo3.oxx&#xt  0  3  6 3 | 0  0 0  3  6  3 3  6 3 | 0 0  0 1  0  3  3 0  3 3 1 | * * * * 4 * *
..oo3..xo ....&#x   0  0  3 1 | 0  0 0  0  0  3 0  3 0 | 0 0  0 0  0  0  0 1  3 0 0 | * * * * * 4 *
...o3...o3...x      0  0  0 4 | 0  0 0  0  0  0 0  0 6 | 0 0  0 0  0  0  0 0  0 0 4 | * * * * * * 1
or
o...3o...3o...     & | 8  *   3  3  0  0  0 | 3  3  3 0  0  0 | 1 3 1 0
.o..3.o..3.o..     & | * 24   0  1  1  2  2 | 0  1  2 1  3  2 | 0 3 1 1
---------------------+------+----------------+-----------------+--------
x... .... ....     & | 2  0 | 12  *  *  *  * | 2  1  0 0  0  0 | 1 2 0 0
oo..3oo..3oo..&#x  & | 1  1 |  * 24  *  *  * | 0  1  2 0  0  0 | 0 2 1 0
.x.. .... ....     & | 0  2 |  *  * 12  *  * | 0  1  0 0  2  0 | 0 2 0 1
.... .x.. ....     & | 0  2 |  *  *  * 24  * | 0  0  1 1  0  1 | 0 2 1 0
.oo.3.oo.3.oo.&#x    | 0  2 |  *  *  *  * 24 | 0  0  0 0  2  1 | 0 2 0 1
---------------------+------+----------------+-----------------+--------
x...3o... ....     & | 3  0 |  3  0  0  0  0 | 8  *  * *  *  * | 1 1 0 0
xx.. .... ....&#x  & | 2  2 |  1  2  1  0  0 | * 12  * *  *  * | 0 2 0 0
.... ox.. ....&#x  & | 1  2 |  0  2  0  1  0 | *  * 24 *  *  * | 0 1 1 0
.... .x..3.o..     & | 0  3 |  0  0  0  3  0 | *  *  * 8  *  * | 0 1 1 0
.xo. .... ....&#x  & | 0  3 |  0  0  1  0  2 | *  *  * * 24  * | 0 1 0 1
.... .xx. ....&#x    | 0  4 |  0  0  0  2  2 | *  *  * *  * 12 | 0 2 0 0
---------------------+------+----------------+-----------------+--------
x...3o...3o...     &  4  0 |  6  0  0  0  0 | 4  0  0 0  0  0 | 2 * * *
xxo.3oxx. ....&#xt &  3  9 |  3  6  3  6  6 | 1  3  3 1  3  3 | * 8 * *
.... ox..3oo..&#x  &  1  3 |  0  3  0  3  0 | 0  0  3 1  0  0 | * * 8 *
.xo. .... .ox.&#x     0  4 |  0  0  2  0  4 | 0  0  0 0  4  0 | * * * 6

ooo3xox4oqo&#xt   → both heights = 1/sqrt(2) = 0.707107
(co || pseudo q-cube || co)

o..3o..4o..     | 12 *  *   4  2  0  0 | 2 2  4  1  0 0 0 | 1 2 2 0 0
.o.3.o.4.o.     |  * 8  *   0  3  3  0 | 0 0  3  3  3 0 0 | 0 1 3 1 0
..o3..o4..o     |  * * 12   0  0  2  4 | 0 0  0  1  4 2 2 | 0 0 2 2 1
----------------+---------+-------------+------------------+----------
... x.. ...     |  2 0  0 | 24  *  *  * | 1 1  1  0  0 0 0 | 1 1 1 0 0
oo.3oo.4oo.&#x  |  1 1  0 |  * 24  *  * | 0 0  2  1  0 0 0 | 0 1 2 0 0
.oo3.oo4.oo&#x  |  0 1  1 |  *  * 24  * | 0 0  0  1  2 0 0 | 0 0 2 1 0
... ..x ...     |  0 0  2 |  *  *  * 24 | 0 0  0  0  1 1 1 | 0 0 1 1 1
----------------+---------+-------------+------------------+----------
o..3x.. ...     |  3 0  0 |  3  0  0  0 | 8 *  *  *  * * * | 1 1 0 0 0
... x..4o..     |  4 0  0 |  4  0  0  0 | * 6  *  *  * * * | 1 0 1 0 0
... xo. ...&#x  |  2 1  0 |  1  2  0  0 | * * 24  *  * * * | 0 1 1 0 0
... ... oqo&#xt |  1 2  1 |  0  2  2  0 | * *  * 12  * * * | 0 0 2 0 0
... .ox ...&#x  |  0 1  2 |  0  0  2  1 | * *  *  * 24 * * | 0 0 1 1 0
..o3..x ...     |  0 0  3 |  0  0  0  3 | * *  *  *  * 8 * | 0 0 0 1 1
... ..x4..o     |  0 0  4 |  0  0  0  4 | * *  *  *  * * 6 | 0 0 1 0 1
----------------+---------+-------------+------------------+----------
o..3x..4o..      12 0  0 | 24  0  0  0 | 8 6  0  0  0 0 0 | 1 * * * *
oo.3xo. ...&#x    3 1  0 |  3  3  0  0 | 1 0  3  0  0 0 0 | * 8 * * *
... xox4oqo&#xt   4 4  4 |  4  8  8  4 | 0 1  4  4  4 0 1 | * * 6 * *
.oo3.ox ...&#x    0 1  3 |  0  0  3  3 | 0 0  0  0  3 1 0 | * * * 8 *
..o3..x4..o       0 0 12 |  0  0  0 24 | 0 0  0  0  0 8 6 | * * * * 1
or
o..3o..4o..      & | 24 *   4  2 |  2  2  4  1 | 1  2 2
.o.3.o.4.o.        |  * 8   0  6 |  0  0  6  3 | 0  2 3
-------------------+------+-------+-------------+-------
... x.. ...      & |  2 0 | 48  * |  1  1  1  0 | 1  1 1
oo.3oo.4oo.&#x   & |  1 1 |  * 48 |  0  0  2  1 | 0  1 2
-------------------+------+-------+-------------+-------
o..3x.. ...      & |  3 0 |  3  0 | 16  *  *  * | 1  1 0
... x..4o..      & |  4 0 |  4  0 |  * 12  *  * | 1  0 1
... xo. ...&#x   & |  2 1 |  1  2 |  *  * 48  * | 0  1 1
... ... oqo&#xt    |  2 2 |  0  4 |  *  *  * 12 | 0  0 2
-------------------+------+-------+-------------+-------
o..3x..4o..      &  12 0 | 24  0 |  8  6  0  0 | 2  * *
oo.3xo. ...&#x   &   3 1 |  3  3 |  1  0  3  0 | * 16 *
... xox4oqo&#xt      8 4 |  8 16 |  0  2  8  4 | *  * 6

oxuxo xoxox4oqoqo&#xt   → all heights = 1/2
({4} || gyro (q,q,x)-cube || (x,x,u)-cube || gyro (q,q,x)-cube || {4})

o.... o....4o....     & | 8  * *  2  4 0  0 0 0 | 1  2  4  2  0  0 0 0 | 2 2 1 0
.o... .o...4.o...     & | * 16 *  0  2 1  2 1 0 | 0  2  1  2  1  2 1 0 | 1 1 2 1
..o.. ..o..4..o..       | *  * 8  0  0 0  4 0 2 | 0  0  0  2  4  2 0 1 | 0 2 1 2
------------------------+--------+---------------+----------------------+--------
..... x.... .....     & | 2  0 0 | 8  * *  * * * | 1  0  2  0  0  0 0 0 | 1 2 0 0
oo... oo...4oo...&#x  & | 1  1 0 | * 32 *  * * * | 0  1  1  1  0  0 0 0 | 1 1 1 0
.x... ..... .....     & | 0  2 0 | *  * 8  * * * | 0  2  0  0  0  0 1 0 | 1 0 2 0
.oo.. .oo..4.oo..&#x  & | 0  1 1 | *  * * 32 * * | 0  0  0  1  1  1 0 0 | 0 1 1 1
.o.o. .o.o.4.o.o.&#x    | 0  2 0 | *  * *  * 8 * | 0  0  0  0  0  2 1 0 | 0 0 2 1
..... ..x.. .....       | 0  0 2 | *  * *  * * 8 | 0  0  0  0  2  0 0 1 | 0 2 0 1
------------------------+--------+---------------+----------------------+--------
..... x....4o....     & | 4  0 0 | 4  0 0  0 0 0 | 2  *  *  *  *  * * * | 0 2 0 0
ox... ..... .....&#x  & | 1  2 0 | 0  2 1  0 0 0 | * 16  *  *  *  * * * | 1 0 1 0
..... xo... .....&#x  & | 2  1 0 | 1  2 0  0 0 0 | *  * 16  *  *  * * * | 1 1 0 0
..... ..... oqo..&#xt & | 1  2 1 | 0  2 0  2 0 0 | *  *  * 16  *  * * * | 0 1 1 0
..... .ox.. .....&#x  & | 0  1 2 | 0  0 0  2 0 1 | *  *  *  * 16  * * * | 0 1 0 1
.ooo. .ooo.4.ooo.&#x    | 0  2 1 | 0  0 0  2 1 0 | *  *  *  *  * 16 * * | 0 0 1 1
.x.x. ..... .....&#x    | 0  4 0 | 0  0 2  0 2 0 | *  *  *  *  *  * 4 * | 0 0 2 0
..... ..x..4..o..       | 0  0 4 | 0  0 0  0 0 4 | *  *  *  *  *  * * 2 | 0 2 0 0
------------------------+--------+---------------+----------------------+--------
ox... xo... .....&#x  &  2  2 0 | 1  4 1  0 0 0 | 0  2  2  0  0  0 0 0 | 8 * * *
..... xox..4oqo..&#xt &  4  4 4 | 4  8 0  8 0 4 | 1  0  4  4  4  0 0 1 | * 4 * *
oxuxo ..... oqoqo&#xt    2  8 2 | 0  8 4  8 4 0 | 0  4  0  4  0  4 2 0 | * * 4 *
..... .oxo. .....&#x     0  2 2 | 0  0 0  4 1 1 | 0  0  0  0  2  2 0 0 | * * * 8

qo oo3xo4oq&#zx   → height = 0
(tegum sum of (q,x,x)-cope and equatorial q-cube)

o. o.3o.4o.     | 24 *   4  2 |  2  2  4  1 | 1 2  2
.o .o3.o4.o     |  * 8   0  6 |  0  0  6  3 | 0 3  2
----------------+------+-------+-------------+-------
.. .. x. ..     |  2 0 | 48  * |  1  1  1  0 | 1 1  1
oo oo3oo4oo&#x  |  1 1 |  * 48 |  0  0  2  1 | 0 2  1
----------------+------+-------+-------------+-------
.. o.3x. ..     |  3 0 |  3  0 | 16  *  *  * | 1 0  1
.. .. x.4o.     |  4 0 |  4  0 |  * 12  *  * | 1 1  0
.. .. xo ..&#x  |  2 1 |  1  2 |  *  * 48  * | 0 1  1
qo .. .. oq&#zx |  2 2 |  0  4 |  *  *  * 12 | 0 2  0
----------------+------+-------+-------------+-------
.. o.3x.4o.      12 0 | 24  0 |  8  6  0  0 | 2 *  *
qo .. xo4oq&#zx   8 4 |  8 16 |  0  2  8  4 | * 6  *
.. oo3xo ..&#x    3 1 |  3  3 |  1  0  3  0 | * * 16

ox4qo xo4oq&#zx   → height = 0
(tegum sum of 2 interchanged (q,q,x,x)-tes)

o.4o. o.4o.     & | 32   2  4 | 1  6  2 |  2 3
------------------+----+-------+---------+-----
.. .. x. ..     & |  2 | 32  * | 1  2  0 |  1 2
oo4oo oo4oo&#x    |  2 |  * 64 | 0  2  1 |  1 2
------------------+----+-------+---------+-----
.. .. x.4o.     & |  4 |  4  0 | 8  *  * |  0 2
ox .. .. ..&#x  & |  3 |  1  2 | * 64  * |  1 1
.. qo .. oq&#zx   |  4 |  0  4 | *  * 16 |  0 2
------------------+----+-------+---------+-----
ox .. xo ..&#x      4 |  2  4 | 0  4  0 | 16 *
ox4qo .. oq&#zx &  12 |  8 16 | 2  8  4 |  * 8

uxo oxu xox4oqo&#zx   → height = 0
(tegum sum of 2 lacing-ortho (u,x,x)-cubes with an (x,x,q,q)-tes)

o.. o.. o..4o..     & | 16  *   2  4  0 | 1  2  4  2 0 |  2 1 2
.o. .o. .o.4.o.       |  * 16   0  4  2 | 0  4  2  2 1 |  2 2 1
----------------------+-------+----------+--------------+-------
... ... x.. ...     & |  2  0 | 16  *  * | 1  0  2  0 0 |  1 0 2
oo. oo. oo.4oo.&#x  & |  1  1 |  * 64  * | 0  1  1  1 0 |  1 1 1
.x. ... ... ...     & |  0  2 |  *  * 16 | 0  2  0  0 1 |  1 2 0
----------------------+-------+----------+--------------+-------
... ... x..4o..     & |  4  0 |  4  0  0 | 4  *  *  * * |  0 0 2
... ox. ... ...&#x  & |  1  2 |  0  2  1 | * 32  *  * * |  1 1 0
... ... xo. ...&#x  & |  2  1 |  1  2  0 | *  * 32  * * |  1 0 1
... ... ... oqo&#xt   |  2  2 |  0  4  0 | *  *  * 16 * |  0 1 1
.x. .x. ... ...       |  0  4 |  0  0  4 | *  *  *  * 4 |  0 2 0
----------------------+-------+----------+--------------+-------
... ox. xo. ...&#x  &   2  2 |  1  4  1 | 0  2  2  0 0 | 16 * *
uxo oxu ... oqo&#zx     4  8 |  0 16  8 | 0  8  0  4 2 |  * 4 *
... ... xox4oqo&#xt     8  4 |  8 16  0 | 2  0  8  4 0 |  * * 4

© 2004-2024
top of page