Acronym | quithdow |
Name |
(bi-)quithic disphenoid, quith atop fully orthogonal quith |
Circumradius | sqrt[(9-4 sqrt(2))/8] = 0.646447 |
Face vector | 48, 648, 1756, 1970, 1056, 268, 28 |
Confer |
|
Incidence matrix according to Dynkin symbol
xo4/3xo3oo ox4/3ox3oo&#x → height = sqrt[(4 sqrt(2)-5)/2] = 0.573086 (pyramid product of 2 quiths) o.4/3o.3o. o.4/3o.3o. & | 48 | 1 2 24 | 2 1 36 72 | 1 54 12 48 32 48 | 25 30 60 20 40 | 13 26 12 22 8 | 8 9 ---------------------------+----+-----------+----------------+-----------------------+--------------------+----------------+------ x. .. .. .. .. .. & | 2 | 24 * * | 2 0 24 0 | 1 48 12 24 0 0 | 24 30 48 8 0 | 13 24 12 16 0 | 8 8 .. x. .. .. .. .. & | 2 | * 48 * | 1 1 0 24 | 1 24 0 12 24 24 | 24 12 30 12 32 | 12 25 6 14 8 | 7 9 oo4/3oo3oo oo4/3oo3oo&#x | 2 | * * 576 | 0 0 2 4 | 0 4 1 4 2 4 | 2 4 8 2 4 | 2 4 4 4 1 | 4 2 ---------------------------+----+-----------+----------------+-----------------------+--------------------+----------------+------ x.4/3x. .. .. .. .. & | 8 | 4 4 0 | 12 * * * | 1 24 0 0 0 0 | 24 12 24 0 0 | 12 24 6 8 0 | 7 8 .. x.3o. .. .. .. & | 3 | 0 3 0 | * 16 * * | 1 0 0 0 24 0 | 24 0 0 12 24 | 12 24 0 6 8 | 6 9 xo .. .. .. .. ..&#x & | 3 | 1 0 2 | * * 576 * | 0 2 1 2 0 0 | 1 4 4 1 0 | 2 2 4 2 0 | 4 1 .. xo .. .. .. ..&#x & | 3 | 0 1 2 | * * * 1152 | 0 1 0 1 1 2 | 1 1 4 1 3 | 1 3 2 3 1 | 3 2 ---------------------------+----+-----------+----------------+-----------------------+--------------------+----------------+------ x.4/3x.3o. .. .. .. & ♦ 24 | 12 24 0 | 6 8 0 0 | 2 * * * * * | 24 0 0 0 0 | 12 24 0 0 0 | 6 8 xo4/3xo .. .. .. ..&#x & ♦ 9 | 4 4 8 | 1 0 4 4 | * 288 * * * * | 1 1 2 0 0 | 1 2 2 1 0 | 3 1 xo .. .. ox .. ..&#x ♦ 4 | 2 0 4 | 0 0 4 0 | * * 144 * * * | 0 4 0 0 0 | 2 0 4 0 0 | 4 0 xo .. .. .. ox ..&#x & ♦ 4 | 1 1 4 | 0 0 2 2 | * * * 576 * * | 0 1 2 1 0 | 1 1 2 2 0 | 3 1 .. xo3oo .. .. ..&#x & ♦ 4 | 0 3 3 | 0 1 0 3 | * * * * 384 * | 1 0 0 1 2 | 1 2 0 2 1 | 2 2 .. xo .. .. ox ..&#x ♦ 4 | 0 2 4 | 0 0 0 4 | * * * * * 576 | 0 0 2 0 2 | 0 2 1 2 1 | 2 2 ---------------------------+----+-----------+----------------+-----------------------+--------------------+----------------+------ xo4/3xo3oo .. .. ..&#x & ♦ 25 | 12 24 24 | 6 8 12 24 | 1 6 0 0 8 0 | 48 * * * * | 1 2 0 0 0 | 2 1 xo4/3xo .. ox .. ..&#x & ♦ 10 | 5 4 16 | 1 0 16 8 | 0 2 4 4 0 0 | * 144 * * * | 1 0 2 0 0 | 3 0 xo4/3xo .. .. ox ..&#x & ♦ 10 | 4 5 16 | 1 0 8 16 | 0 2 0 4 0 4 | * * 288 * * | 0 1 1 1 0 | 2 1 .. xo3oo ox .. ..&#x & ♦ 5 | 1 3 6 | 0 1 3 6 | 0 0 0 3 2 0 | * * * 192 * | 1 0 0 2 0 | 2 1 .. xo3oo .. ox ..&#x & ♦ 5 | 0 4 6 | 0 1 0 9 | 0 0 0 0 2 3 | * * * * 384 | 0 1 0 1 1 | 1 2 ---------------------------+----+-----------+----------------+-----------------------+--------------------+----------------+------ xo4/3xo3oo ox .. ..&#x & ♦ 26 | 13 24 48 | 6 8 48 48 | 1 12 12 24 16 0 | 2 6 0 8 0 | 24 * * * * | 2 0 xo4/3xo3oo .. ox ..&#x & ♦ 26 | 12 25 48 | 6 8 24 72 | 1 12 0 12 16 24 | 2 0 6 0 8 | * 48 * * * | 1 1 xo4/3xo .. ox4/3ox ..&#x ♦ 16 | 8 8 64 | 2 0 64 64 | 0 16 16 32 0 16 | 0 8 8 0 0 | * * 36 * * | 2 0 xo4/3xo .. .. ox3oo&#x & ♦ 11 | 4 7 24 | 1 1 12 36 | 0 3 0 12 8 12 | 0 0 3 4 4 | * * * 96 * | 1 1 .. xo3oo .. ox3oo&#x ♦ 6 | 0 6 9 | 0 2 0 18 | 0 0 0 0 6 9 | 0 0 0 0 6 | * * * * 64 | 0 2 ---------------------------+----+-----------+----------------+-----------------------+--------------------+----------------+------ xo4/3xo3oo ox4/3ox ..&#x & ♦ 32 | 16 28 192 | 7 8 192 288 | 1 72 48 144 64 96 | 8 36 48 32 32 | 4 4 6 8 0 | 12 * xo4/3xo3oo .. ox3oo&#x & ♦ 27 | 12 27 72 | 6 9 36 144 | 1 18 0 36 48 72 | 3 0 18 12 48 | 0 3 0 6 8 | * 16
© 2004-2024 | top of page |