Acronym quithdow
Name (bi-)quithic disphenoid,
quith atop fully orthogonal quith
Circumradius sqrt[(9-4 sqrt(2))/8] = 0.646447
Face vector 48, 648, 1756, 1970, 1056, 268, 28
Confer
general polytopal classes:
segmentoexa   scaliform  

Incidence matrix according to Dynkin symbol

xo4/3xo3oo ox4/3ox3oo&#x   → height = sqrt[(4 sqrt(2)-5)/2] = 0.573086
(pyramid product of 2 quiths)

o.4/3o.3o. o.4/3o.3o.    & | 48 |  1  2  24 |  2  1  36   72 | 1  54  12  48  32  48 | 25  30  60  20  40 | 13 26 12 22  8 |  8  9
---------------------------+----+-----------+----------------+-----------------------+--------------------+----------------+------
x.   .. .. ..   .. ..    & |  2 | 24  *   * |  2  0  24    0 | 1  48  12  24   0   0 | 24  30  48   8   0 | 13 24 12 16  0 |  8  8
..   x. .. ..   .. ..    & |  2 |  * 48   * |  1  1   0   24 | 1  24   0  12  24  24 | 24  12  30  12  32 | 12 25  6 14  8 |  7  9
oo4/3oo3oo oo4/3oo3oo&#x   |  2 |  *  * 576 |  0  0   2    4 | 0   4   1   4   2   4 |  2   4   8   2   4 |  2  4  4  4  1 |  4  2
---------------------------+----+-----------+----------------+-----------------------+--------------------+----------------+------
x.4/3x. .. ..   .. ..    & |  8 |  4  4   0 | 12  *   *    * | 1  24   0   0   0   0 | 24  12  24   0   0 | 12 24  6  8  0 |  7  8
..   x.3o. ..   .. ..    & |  3 |  0  3   0 |  * 16   *    * | 1   0   0   0  24   0 | 24   0   0  12  24 | 12 24  0  6  8 |  6  9
xo   .. .. ..   .. ..&#x & |  3 |  1  0   2 |  *  * 576    * | 0   2   1   2   0   0 |  1   4   4   1   0 |  2  2  4  2  0 |  4  1
..   xo .. ..   .. ..&#x & |  3 |  0  1   2 |  *  *   * 1152 | 0   1   0   1   1   2 |  1   1   4   1   3 |  1  3  2  3  1 |  3  2
---------------------------+----+-----------+----------------+-----------------------+--------------------+----------------+------
x.4/3x.3o. ..   .. ..    &  24 | 12 24   0 |  6  8   0    0 | 2   *   *   *   *   * | 24   0   0   0   0 | 12 24  0  0  0 |  6  8
xo4/3xo .. ..   .. ..&#x &   9 |  4  4   8 |  1  0   4    4 | * 288   *   *   *   * |  1   1   2   0   0 |  1  2  2  1  0 |  3  1
xo   .. .. ox   .. ..&#x     4 |  2  0   4 |  0  0   4    0 | *   * 144   *   *   * |  0   4   0   0   0 |  2  0  4  0  0 |  4  0
xo   .. .. ..   ox ..&#x &   4 |  1  1   4 |  0  0   2    2 | *   *   * 576   *   * |  0   1   2   1   0 |  1  1  2  2  0 |  3  1
..   xo3oo ..   .. ..&#x &   4 |  0  3   3 |  0  1   0    3 | *   *   *   * 384   * |  1   0   0   1   2 |  1  2  0  2  1 |  2  2
..   xo .. ..   ox ..&#x     4 |  0  2   4 |  0  0   0    4 | *   *   *   *   * 576 |  0   0   2   0   2 |  0  2  1  2  1 |  2  2
---------------------------+----+-----------+----------------+-----------------------+--------------------+----------------+------
xo4/3xo3oo ..   .. ..&#x &  25 | 12 24  24 |  6  8  12   24 | 1   6   0   0   8   0 | 48   *   *   *   * |  1  2  0  0  0 |  2  1
xo4/3xo .. ox   .. ..&#x &  10 |  5  4  16 |  1  0  16    8 | 0   2   4   4   0   0 |  * 144   *   *   * |  1  0  2  0  0 |  3  0
xo4/3xo .. ..   ox ..&#x &  10 |  4  5  16 |  1  0   8   16 | 0   2   0   4   0   4 |  *   * 288   *   * |  0  1  1  1  0 |  2  1
..   xo3oo ox   .. ..&#x &   5 |  1  3   6 |  0  1   3    6 | 0   0   0   3   2   0 |  *   *   * 192   * |  1  0  0  2  0 |  2  1
..   xo3oo ..   ox ..&#x &   5 |  0  4   6 |  0  1   0    9 | 0   0   0   0   2   3 |  *   *   *   * 384 |  0  1  0  1  1 |  1  2
---------------------------+----+-----------+----------------+-----------------------+--------------------+----------------+------
xo4/3xo3oo ox   .. ..&#x &  26 | 13 24  48 |  6  8  48   48 | 1  12  12  24  16   0 |  2   6   0   8   0 | 24  *  *  *  * |  2  0
xo4/3xo3oo ..   ox ..&#x &  26 | 12 25  48 |  6  8  24   72 | 1  12   0  12  16  24 |  2   0   6   0   8 |  * 48  *  *  * |  1  1
xo4/3xo .. ox4/3ox ..&#x    16 |  8  8  64 |  2  0  64   64 | 0  16  16  32   0  16 |  0   8   8   0   0 |  *  * 36  *  * |  2  0
xo4/3xo .. ..   ox3oo&#x &  11 |  4  7  24 |  1  1  12   36 | 0   3   0  12   8  12 |  0   0   3   4   4 |  *  *  * 96  * |  1  1
..   xo3oo ..   ox3oo&#x     6 |  0  6   9 |  0  2   0   18 | 0   0   0   0   6   9 |  0   0   0   0   6 |  *  *  *  * 64 |  0  2
---------------------------+----+-----------+----------------+-----------------------+--------------------+----------------+------
xo4/3xo3oo ox4/3ox ..&#x &  32 | 16 28 192 |  7  8 192  288 | 1  72  48 144  64  96 |  8  36  48  32  32 |  4  4  6  8  0 | 12  *
xo4/3xo3oo ..   ox3oo&#x &  27 | 12 27  72 |  6  9  36  144 | 1  18   0  36  48  72 |  3   0  18  12  48 |  0  3  0  6  8 |  * 16

© 2004-2024
top of page