Acronym | titridafup |
Name | triangle-tridafup duoprism |
Circumradius | sqrt(13/12) = 1.040833 |
Face vector | 54, 270, 540, 558, 324, 105, 17 |
Confer |
|
Incidence matrix according to Dynkin symbol
xo3ox xo3ox xx3oo&#x → height = 1/sqrt(3) = 0.577350
(trittip || bidual trittip)
o.3o. o.3o. o.3o. & | 54 | 4 2 4 | 2 4 8 1 12 8 | 4 4 8 4 4 5 4 24 4 | 1 8 2 4 6 8 10 8 12 | 2 4 1 12 4 5 4 | 1 2 6
-----------------------+----+------------+----------------------+-----------------------------+---------------------------+--------------------+-------
x. .. .. .. .. .. & | 2 | 108 * * | 1 2 2 0 2 0 | 3 2 4 1 2 2 1 4 0 | 1 6 1 2 4 4 4 2 2 | 2 3 1 8 2 2 1 | 1 2 4
.. .. .. .. x. .. & | 2 | * 54 * | 0 0 4 1 0 4 | 0 2 4 4 0 0 0 12 4 | 0 4 2 4 0 4 5 4 12 | 1 4 0 6 4 5 4 | 1 1 6
oo3oo oo3oo oo3oo&#x | 2 | * * 108 | 0 0 0 0 4 2 | 0 0 0 0 2 2 2 8 1 | 0 0 0 0 4 4 4 4 4 | 0 0 1 8 2 2 2 | 0 2 4
-----------------------+----+------------+----------------------+-----------------------------+---------------------------+--------------------+-------
x.3o. .. .. .. .. & | 3 | 3 0 0 | 36 * * * * * | 2 2 0 0 2 0 0 0 0 | 1 4 1 0 3 4 0 0 0 | 2 2 1 6 2 0 0 | 1 2 3
x. .. x. .. .. .. & | 4 | 4 0 0 | * 54 * * * * | 2 0 2 0 0 1 0 0 0 | 1 4 0 1 2 0 2 0 0 | 2 2 1 4 0 1 0 | 1 2 2
x. .. .. .. x. .. & | 4 | 2 2 0 | * * 108 * * * | 0 1 2 1 0 0 0 2 0 | 0 3 1 2 0 2 2 1 2 | 1 3 0 4 2 2 1 | 1 1 4
.. .. .. .. x.3o. & | 3 | 0 3 0 | * * * 18 * * | 0 0 0 4 0 0 0 0 4 | 0 0 2 4 0 0 0 0 12 | 0 4 0 0 4 5 4 | 1 0 6
xo .. .. .. .. ..&#x & | 3 | 1 0 2 | * * * * 216 * | 0 0 0 0 1 1 1 2 0 | 0 0 0 0 3 2 2 2 1 | 0 0 1 6 1 1 1 | 0 2 3
.. .. .. .. xx ..&#x | 4 | 0 2 2 | * * * * * 108 | 0 0 0 0 0 0 0 4 1 | 0 0 0 0 0 2 2 2 4 | 0 0 0 4 2 2 2 | 0 1 4
-----------------------+----+------------+----------------------+-----------------------------+---------------------------+--------------------+-------
x.3o. x. .. .. .. & ♦ 6 | 9 0 0 | 2 3 0 0 0 0 | 36 * * * * * * * * | 1 2 0 0 1 0 0 0 0 | 2 1 1 2 0 0 0 | 1 2 1
x.3o. .. .. x. .. & ♦ 6 | 6 3 0 | 2 0 3 0 0 0 | * 36 * * * * * * * | 0 2 1 0 0 2 0 0 0 | 1 2 0 3 2 0 0 | 1 1 3
x. .. x. .. x. .. & ♦ 8 | 8 4 0 | 0 2 4 0 0 0 | * * 54 * * * * * * | 0 2 0 1 0 0 1 0 0 | 1 2 0 2 0 1 0 | 1 1 2
x. .. .. .. x.3o. & ♦ 6 | 3 6 0 | 0 0 3 2 0 0 | * * * 36 * * * * * | 0 0 1 2 0 0 0 0 2 | 0 3 0 0 2 2 1 | 1 0 4
xo3ox .. .. .. ..&#x & ♦ 6 | 6 0 6 | 2 0 0 0 6 0 | * * * * 36 * * * * | 0 0 0 0 2 2 0 0 0 | 0 0 1 4 1 0 0 | 0 2 2
xo .. xo .. .. ..&#x & ♦ 5 | 4 0 4 | 0 1 0 0 4 0 | * * * * * 54 * * * | 0 0 0 0 2 0 2 0 0 | 0 0 1 4 0 1 0 | 0 2 2
xo .. .. ox .. ..&#x & ♦ 4 | 2 0 4 | 0 0 0 0 4 0 | * * * * * * 54 * * | 0 0 0 0 2 0 0 2 0 | 0 0 1 4 0 0 1 | 0 2 2
xo .. .. .. xx ..&#x & ♦ 6 | 2 3 4 | 0 0 1 0 2 2 | * * * * * * * 216 * | 0 0 0 0 0 1 1 1 1 | 0 0 0 3 1 1 1 | 0 1 3
.. .. .. .. xx3oo&#x ♦ 6 | 0 6 3 | 0 0 0 2 0 3 | * * * * * * * * 36 | 0 0 0 0 0 0 0 0 4 | 0 0 0 0 2 2 2 | 0 0 4
-----------------------+----+------------+----------------------+-----------------------------+---------------------------+--------------------+-------
x.3o. x.3o. .. .. & ♦ 9 | 18 0 0 | 6 9 0 0 0 0 | 6 0 0 0 0 0 0 0 0 | 6 * * * * * * * * | 2 0 1 0 0 0 0 | 1 2 0
x.3o. x. .. x. .. & ♦ 12 | 18 6 0 | 4 6 9 0 0 0 | 2 2 3 0 0 0 0 0 0 | * 36 * * * * * * * | 1 1 0 1 0 0 0 | 1 1 1
x.3o. .. .. x.3o. & ♦ 9 | 9 9 0 | 3 0 9 3 0 0 | 0 3 0 3 0 0 0 0 0 | * * 12 * * * * * * | 0 2 0 0 2 0 0 | 1 0 3
x. .. x. .. x.3o. & ♦ 12 | 12 12 0 | 0 3 12 4 0 0 | 0 0 3 4 0 0 0 0 0 | * * * 18 * * * * * | 0 2 0 0 0 1 0 | 1 0 2
xo3ox xo .. .. ..&#x & ♦ 9 | 12 0 12 | 3 3 0 0 18 0 | 1 0 0 0 2 3 3 0 0 | * * * * 36 * * * * | 0 0 1 2 0 0 0 | 0 2 1
xo3ox .. .. xx ..&#x & ♦ 12 | 12 6 12 | 4 0 6 0 12 6 | 0 2 0 0 2 0 0 6 0 | * * * * * 36 * * * | 0 0 0 2 1 0 0 | 0 1 2
xo .. xo .. xx ..&#x & ♦ 10 | 8 5 8 | 0 2 4 0 8 4 | 0 0 1 0 0 2 0 4 0 | * * * * * * 54 * * | 0 0 0 2 0 1 0 | 0 1 2
xo .. .. ox xx ..&#x & ♦ 8 | 4 4 8 | 0 0 2 0 8 4 | 0 0 0 0 0 0 2 4 0 | * * * * * * * 54 * | 0 0 0 2 0 0 1 | 0 1 2
xo .. .. .. xx3oo&#x & ♦ 9 | 3 9 6 | 0 0 3 3 3 6 | 0 0 0 1 0 0 0 3 2 | * * * * * * * * 72 | 0 0 0 0 1 1 1 | 0 0 3
-----------------------+----+------------+----------------------+-----------------------------+---------------------------+--------------------+-------
x.3o. x.3o. x. .. & ♦ 18 | 36 9 0 | 12 18 18 0 0 0 | 12 6 9 0 0 0 0 0 0 | 2 6 0 0 0 0 0 0 0 | 6 * * * * * * | 1 1 0
x.3o. x. .. x.3o. & ♦ 18 | 27 18 0 | 6 9 27 6 0 0 | 3 6 9 9 0 0 0 0 0 | 0 3 2 3 0 0 0 0 0 | * 12 * * * * * | 1 0 1
xo3ox xo3ox .. ..&#x ♦ 18 | 36 0 36 | 12 18 0 0 72 0 | 12 0 0 0 12 18 18 0 0 | 2 0 0 0 12 0 0 0 0 | * * 3 * * * * | 0 2 0
xo3ox xo .. xx ..&#x & ♦ 18 | 24 9 24 | 6 6 12 0 36 12 | 2 3 3 0 4 6 6 18 0 | 0 1 0 0 2 2 3 3 0 | * * * 36 * * * | 0 1 1
xo3ox .. .. xx3oo&#x & ♦ 18 | 18 18 18 | 6 0 18 6 18 18 | 0 6 0 6 3 0 0 18 6 | 0 0 2 0 0 3 0 0 6 | * * * * 12 * * | 0 0 2
xo .. xo .. xx3oo&#x & ♦ 15 | 12 15 12 | 0 3 12 5 12 12 | 0 0 3 4 0 3 0 12 4 | 0 0 0 1 0 0 3 0 4 | * * * * * 18 * | 0 0 2
xo .. .. ox xx3oo&#x & ♦ 12 | 6 12 12 | 0 0 6 4 12 12 | 0 0 0 2 0 0 3 12 4 | 0 0 0 0 0 0 0 3 4 | * * * * * * 18 | 0 0 2
-----------------------+----+------------+----------------------+-----------------------------+---------------------------+--------------------+-------
x.3o. x.3o. x.3o. & ♦ 27 | 54 27 0 | 18 27 54 9 0 0 | 18 18 27 18 0 0 0 0 0 | 3 18 6 9 0 0 0 0 0 | 3 6 0 0 0 0 0 | 2 * *
xo3ox xo3ox xx ..&#x ♦ 36 | 72 18 72 | 24 36 36 0 144 36 | 24 12 18 0 24 36 36 72 0 | 4 12 0 0 24 12 18 18 0 | 2 0 2 12 0 0 0 | * 3 *
xo3ox xo .. xx3oo&#x & ♦ 27 | 36 27 36 | 9 9 36 9 54 36 | 3 9 9 12 6 9 9 54 12 | 0 3 3 3 3 6 9 9 18 | 0 1 0 3 2 3 3 | * * 12
© 2004-2025 | top of page |