Acronym titridafup
Name triangle-tridafup duoprism
Circumradius sqrt(13/12) = 1.040833
Face vector 54, 270, 540, 558, 324, 105, 17
Confer
general polytopal classes:
scaliform   segmentoexa   lace simplices  

Incidence matrix according to Dynkin symbol

xo3ox xo3ox xx3oo&#x   → height = 1/sqrt(3) = 0.577350
(trittip || bidual trittip)

o.3o. o.3o. o.3o.    & | 54 |   4  2   4 |  2  4   8  1  12   8 |  4  4  8  4  4  5  4  24  4 | 1  8  2  4  6  8 10  8 12 | 2  4 1 12  4  5  4 | 1 2  6
-----------------------+----+------------+----------------------+-----------------------------+---------------------------+--------------------+-------
x. .. .. .. .. ..    & |  2 | 108  *   * |  1  2   2  0   2   0 |  3  2  4  1  2  2  1   4  0 | 1  6  1  2  4  4  4  2  2 | 2  3 1  8  2  2  1 | 1 2  4
.. .. .. .. x. ..    & |  2 |   * 54   * |  0  0   4  1   0   4 |  0  2  4  4  0  0  0  12  4 | 0  4  2  4  0  4  5  4 12 | 1  4 0  6  4  5  4 | 1 1  6
oo3oo oo3oo oo3oo&#x   |  2 |   *  * 108 |  0  0   0  0   4   2 |  0  0  0  0  2  2  2   8  1 | 0  0  0  0  4  4  4  4  4 | 0  0 1  8  2  2  2 | 0 2  4
-----------------------+----+------------+----------------------+-----------------------------+---------------------------+--------------------+-------
x.3o. .. .. .. ..    & |  3 |   3  0   0 | 36  *   *  *   *   * |  2  2  0  0  2  0  0   0  0 | 1  4  1  0  3  4  0  0  0 | 2  2 1  6  2  0  0 | 1 2  3
x. .. x. .. .. ..    & |  4 |   4  0   0 |  * 54   *  *   *   * |  2  0  2  0  0  1  0   0  0 | 1  4  0  1  2  0  2  0  0 | 2  2 1  4  0  1  0 | 1 2  2
x. .. .. .. x. ..    & |  4 |   2  2   0 |  *  * 108  *   *   * |  0  1  2  1  0  0  0   2  0 | 0  3  1  2  0  2  2  1  2 | 1  3 0  4  2  2  1 | 1 1  4
.. .. .. .. x.3o.    & |  3 |   0  3   0 |  *  *   * 18   *   * |  0  0  0  4  0  0  0   0  4 | 0  0  2  4  0  0  0  0 12 | 0  4 0  0  4  5  4 | 1 0  6
xo .. .. .. .. ..&#x & |  3 |   1  0   2 |  *  *   *  * 216   * |  0  0  0  0  1  1  1   2  0 | 0  0  0  0  3  2  2  2  1 | 0  0 1  6  1  1  1 | 0 2  3
.. .. .. .. xx ..&#x   |  4 |   0  2   2 |  *  *   *  *   * 108 |  0  0  0  0  0  0  0   4  1 | 0  0  0  0  0  2  2  2  4 | 0  0 0  4  2  2  2 | 0 1  4
-----------------------+----+------------+----------------------+-----------------------------+---------------------------+--------------------+-------
x.3o. x. .. .. ..    &   6 |   9  0   0 |  2  3   0  0   0   0 | 36  *  *  *  *  *  *   *  * | 1  2  0  0  1  0  0  0  0 | 2  1 1  2  0  0  0 | 1 2  1
x.3o. .. .. x. ..    &   6 |   6  3   0 |  2  0   3  0   0   0 |  * 36  *  *  *  *  *   *  * | 0  2  1  0  0  2  0  0  0 | 1  2 0  3  2  0  0 | 1 1  3
x. .. x. .. x. ..    &   8 |   8  4   0 |  0  2   4  0   0   0 |  *  * 54  *  *  *  *   *  * | 0  2  0  1  0  0  1  0  0 | 1  2 0  2  0  1  0 | 1 1  2
x. .. .. .. x.3o.    &   6 |   3  6   0 |  0  0   3  2   0   0 |  *  *  * 36  *  *  *   *  * | 0  0  1  2  0  0  0  0  2 | 0  3 0  0  2  2  1 | 1 0  4
xo3ox .. .. .. ..&#x &   6 |   6  0   6 |  2  0   0  0   6   0 |  *  *  *  * 36  *  *   *  * | 0  0  0  0  2  2  0  0  0 | 0  0 1  4  1  0  0 | 0 2  2
xo .. xo .. .. ..&#x &   5 |   4  0   4 |  0  1   0  0   4   0 |  *  *  *  *  * 54  *   *  * | 0  0  0  0  2  0  2  0  0 | 0  0 1  4  0  1  0 | 0 2  2
xo .. .. ox .. ..&#x &   4 |   2  0   4 |  0  0   0  0   4   0 |  *  *  *  *  *  * 54   *  * | 0  0  0  0  2  0  0  2  0 | 0  0 1  4  0  0  1 | 0 2  2
xo .. .. .. xx ..&#x &   6 |   2  3   4 |  0  0   1  0   2   2 |  *  *  *  *  *  *  * 216  * | 0  0  0  0  0  1  1  1  1 | 0  0 0  3  1  1  1 | 0 1  3
.. .. .. .. xx3oo&#x     6 |   0  6   3 |  0  0   0  2   0   3 |  *  *  *  *  *  *  *   * 36 | 0  0  0  0  0  0  0  0  4 | 0  0 0  0  2  2  2 | 0 0  4
-----------------------+----+------------+----------------------+-----------------------------+---------------------------+--------------------+-------
x.3o. x.3o. .. ..    &   9 |  18  0   0 |  6  9   0  0   0   0 |  6  0  0  0  0  0  0   0  0 | 6  *  *  *  *  *  *  *  * | 2  0 1  0  0  0  0 | 1 2  0
x.3o. x. .. x. ..    &  12 |  18  6   0 |  4  6   9  0   0   0 |  2  2  3  0  0  0  0   0  0 | * 36  *  *  *  *  *  *  * | 1  1 0  1  0  0  0 | 1 1  1
x.3o. .. .. x.3o.    &   9 |   9  9   0 |  3  0   9  3   0   0 |  0  3  0  3  0  0  0   0  0 | *  * 12  *  *  *  *  *  * | 0  2 0  0  2  0  0 | 1 0  3
x. .. x. .. x.3o.    &  12 |  12 12   0 |  0  3  12  4   0   0 |  0  0  3  4  0  0  0   0  0 | *  *  * 18  *  *  *  *  * | 0  2 0  0  0  1  0 | 1 0  2
xo3ox xo .. .. ..&#x &   9 |  12  0  12 |  3  3   0  0  18   0 |  1  0  0  0  2  3  3   0  0 | *  *  *  * 36  *  *  *  * | 0  0 1  2  0  0  0 | 0 2  1
xo3ox .. .. xx ..&#x &  12 |  12  6  12 |  4  0   6  0  12   6 |  0  2  0  0  2  0  0   6  0 | *  *  *  *  * 36  *  *  * | 0  0 0  2  1  0  0 | 0 1  2
xo .. xo .. xx ..&#x &  10 |   8  5   8 |  0  2   4  0   8   4 |  0  0  1  0  0  2  0   4  0 | *  *  *  *  *  * 54  *  * | 0  0 0  2  0  1  0 | 0 1  2
xo .. .. ox xx ..&#x &   8 |   4  4   8 |  0  0   2  0   8   4 |  0  0  0  0  0  0  2   4  0 | *  *  *  *  *  *  * 54  * | 0  0 0  2  0  0  1 | 0 1  2
xo .. .. .. xx3oo&#x &   9 |   3  9   6 |  0  0   3  3   3   6 |  0  0  0  1  0  0  0   3  2 | *  *  *  *  *  *  *  * 72 | 0  0 0  0  1  1  1 | 0 0  3
-----------------------+----+------------+----------------------+-----------------------------+---------------------------+--------------------+-------
x.3o. x.3o. x. ..    &  18 |  36  9   0 | 12 18  18  0   0   0 | 12  6  9  0  0  0  0   0  0 | 2  6  0  0  0  0  0  0  0 | 6  * *  *  *  *  * | 1 1  0
x.3o. x. .. x.3o.    &  18 |  27 18   0 |  6  9  27  6   0   0 |  3  6  9  9  0  0  0   0  0 | 0  3  2  3  0  0  0  0  0 | * 12 *  *  *  *  * | 1 0  1
xo3ox xo3ox .. ..&#x    18 |  36  0  36 | 12 18   0  0  72   0 | 12  0  0  0 12 18 18   0  0 | 2  0  0  0 12  0  0  0  0 | *  * 3  *  *  *  * | 0 2  0
xo3ox xo .. xx ..&#x &  18 |  24  9  24 |  6  6  12  0  36  12 |  2  3  3  0  4  6  6  18  0 | 0  1  0  0  2  2  3  3  0 | *  * * 36  *  *  * | 0 1  1
xo3ox .. .. xx3oo&#x &  18 |  18 18  18 |  6  0  18  6  18  18 |  0  6  0  6  3  0  0  18  6 | 0  0  2  0  0  3  0  0  6 | *  * *  * 12  *  * | 0 0  2
xo .. xo .. xx3oo&#x &  15 |  12 15  12 |  0  3  12  5  12  12 |  0  0  3  4  0  3  0  12  4 | 0  0  0  1  0  0  3  0  4 | *  * *  *  * 18  * | 0 0  2
xo .. .. ox xx3oo&#x &  12 |   6 12  12 |  0  0   6  4  12  12 |  0  0  0  2  0  0  3  12  4 | 0  0  0  0  0  0  0  3  4 | *  * *  *  *  * 18 | 0 0  2
-----------------------+----+------------+----------------------+-----------------------------+---------------------------+--------------------+-------
x.3o. x.3o. x.3o.    &  27 |  54 27   0 | 18 27  54  9   0   0 | 18 18 27 18  0  0  0   0  0 | 3 18  6  9  0  0  0  0  0 | 3  6 0  0  0  0  0 | 2 *  *
xo3ox xo3ox xx ..&#x    36 |  72 18  72 | 24 36  36  0 144  36 | 24 12 18  0 24 36 36  72  0 | 4 12  0  0 24 12 18 18  0 | 2  0 2 12  0  0  0 | * 3  *
xo3ox xo .. xx3oo&#x &  27 |  36 27  36 |  9  9  36  9  54  36 |  3  9  9 12  6  9  9  54 12 | 0  3  3  3  3  6  9  9 18 | 0  1 0  3  2  3  3 | * * 12

© 2004-2025
top of page