Acronym thax
Name truncated hemihexeract,
cantic hexeract
Circumradius sqrt(19)/2 = 2.179449
Inradius
wrt. rix
7/sqrt(12) = 2.020726
Inradius
wrt. tix
sqrt(3) = 1.732051
Inradius
wrt. thin
3/sqrt(8) = 1.060660
Lace city
in approx. ASCII-art
 ©  
t   u   U   T		-- x3x3o *b3o3o (thin)
             
u   d   D   U		-- u3o3x *b3o3o ((u,x)-rin)
             
U   D   d   u		-- x3o3u *b3o3o ((x,u)-rin)
             
T   U   u   t		-- o3x3x *b3o3o (gyro thin)

where:
t = x3x3o *b3o (thex)
T = o3x3x *b3o (gyro thex)
u = u3o3x *b3o ((u,x)-rit)
U = x3o3u *b3o ((x,u)-rit)
d = d3o3o *b3o (d-hex)
D = o3o3d *b3o (gyro d-hex)
Volume 31243/360 = 86.786111
Surface [9345 sqrt(2)+526 sqrt(3)]/30 = 470.896149
Dihedral angles
(at margins)
  • at pen between rix and tix:   arccos(-2/3) = 131.810315°
  • at rap between rix and thin:   arccos[-1/sqrt(6)] = 114.094843°
  • at tip between thin and tix:   arccos[-1/sqrt(6)] = 114.094843°
  • at thex between thin and thin:   90°
Face vector 480, 2160, 3200, 2080, 636, 76
Confer
general polytopal classes:
Wythoffian polypeta   lace simplices  
analogs:
truncated demihypercube tDn  
External
links
wikipedia   polytopewiki  

Incidence matrix according to Dynkin symbol

x3x3o *b3o3o3o

. . .    . . . | 480 |   1    8 |   8   4   12 |   4  12   6   8 |  6   8   4   2 |  4  2  1
---------------+-----+----------+--------------+-----------------+----------------+---------
x . .    . . . |   2 | 240    *    8   0    0 |   4  12   0   0 |  6   8   0   0 |  4  2  0
. x .    . . . |   2 |   * 1920 |   1   1    3 |   1   3   3   3 |  3   3   3   1 |  3  1  1
---------------+-----+----------+--------------+-----------------+----------------+---------
x3x .    . . . |   6 |   3    3 | 640   *    * |   1   3   0   0 |  3   3   0   0 |  3  1  0
. x3o    . . . |   3 |   0    3 |   * 640    * |   1   0   3   0 |  3   0   3   0 |  3  0  1
. x . *b3o . . |   3 |   0    3 |   *   * 1920 |   0   1   1   2 |  1   2   2   1 |  2  1  1
---------------+-----+----------+--------------+-----------------+----------------+---------
x3x3o    . . .   12 |   6   12 |   4   4    0 | 160   *   *   * |  3   0   0   0 |  3  0  0
x3x . *b3o . .   12 |   6   12 |   4   0    4 |   * 480   *   * |  1   2   0   0 |  2  1  0
. x3o *b3o . .    6 |   0   12 |   0   4    4 |   *   * 480   * |  1   0   2   0 |  2  0  1
. x . *b3o3o .    4 |   0    6 |   0   0    4 |   *   *   * 960 |  0   1   1   1 |  1  1  1
---------------+-----+----------+--------------+-----------------+----------------+---------
x3x3o *b3o . .   48 |  24   96 |  32  32   32 |   8   8   8   0 | 60   *   *   * |  2  0  0
x3x . *b3o3o .   20 |  10   30 |  10   0   20 |   0   5   0   5 |  * 192   *   * |  1  1  0
. x3o *b3o3o .   10 |   0   30 |   0  10   20 |   0   0   5   5 |  *   * 192   * |  1  0  1
. x . *b3o3o3o    5 |   0   10 |   0   0   10 |   0   0   0   5 |  *   *   * 192 |  0  1  1
---------------+-----+----------+--------------+-----------------+----------------+---------
x3x3o *b3o3o .  160 |  80  480 | 160 160  320 |  40  80  80  80 | 10  16  16   0 | 12  *  *
x3x . *b3o3o3o   30 |  15   60 |  20   0   60 |   0  15   0  30 |  0   6   0   6 |  * 32  *
. x3o *b3o3o3o   15 |   0   60 |   0  20   60 |   0   0  15  30 |  0   0   6   6 |  *  * 32

o3o3o3x3o4s

demi( . . . . . . ) | 480 |    8   1 |   12   4   8 |   8   6   4  12 |   2   4  6   8 |  1  4  2
--------------------+-----+----------+--------------+-----------------+----------------+---------
demi( . . . x . . ) |   2 | 1920   * |    3   1   1 |   3   3   1   3 |   1   3  3   3 |  1  3  1
      . . . . o4s   |   2 |    * 240     0   0   8 |   0   0   4  12 |   0   0  6   8 |  0  4  2
--------------------+-----+----------+--------------+-----------------+----------------+---------
demi( . . o3x . . ) |   3 |    3   0 | 1920   *   * |   2   1   0   1 |   1   2  1   2 |  1  2  1
demi( . . . x3o . ) |   3 |    3   0 |    * 640   * |   0   3   1   0 |   0   3  3   0 |  1  3  0
sefa( . . . x3o4s ) |   6 |    3   3 |    *   * 640 |   0   0   1   3 |   0   0  3   3 |  0  3  1
--------------------+-----+----------+--------------+-----------------+----------------+---------
demi( . o3o3x . . )    4 |    6   0 |    4   0   0 | 960   *   *   * |   1   1  0   1 |  1  1  1
demi( . . o3x3o . )    6 |   12   0 |    4   4   0 |   * 480   *   * |   0   2  1   0 |  1  2  0
      . . . x3o4s     12 |   12   6 |    0   4   4 |   *   * 160   * |   0   0  3   0 |  0  3  0
sefa( . . o3x3o4s )   12 |   12   6 |    4   0   4 |   *   *   * 480 |   0   0  1   2 |  0  2  1
--------------------+-----+----------+--------------+-----------------+----------------+---------
demi( o3o3o3x . . )    5 |   10   0 |   10   0   0 |   5   0   0   0 | 192   *  *   * |  1  0  1
demi( . o3o3x3o . )   10 |   30   0 |   20  10   0 |   5   5   0   0 |   * 192  *   * |  1  1  0
      . . o3x3o4s     48 |   96  24 |   32  32  32 |   0   8   8   8 |   *   * 60   * |  0  2  0
sefa( . o3o3x3o4s )   20 |   30  10 |   20   0  10 |   5   0   0   5 |   *   *  * 192 |  0  1  1
--------------------+-----+----------+--------------+-----------------+----------------+---------
demi( o3o3o3x3o . )   15 |   60   0 |   60  20   0 |  30  15   0   0 |   6   6  0   0 | 32  *  *
      . o3o3x3o4s    160 |  480  80 |  320 160 160 |  80  80  40  80 |   0  16 10  16 |  * 12  *
sefa( o3o3o3x3o4s )   30 |   60  15 |   60   0  20 |  30   0   0  15 |   6   0  0   6 |  *  * 32

starting figure: o3o3o3x3o4x

© 2004-2024
top of page