Acronym | tat | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Name | truncated tesseract | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Cross sections |
© | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Circumradius | sqrt[(5+3 sqrt(2))/2] = 2.149726 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inradius wrt. tet | (3+2 sqrt(2))/sqrt(8) = 2.060660 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inradius wrt. tic | [1+sqrt(2)]/2 = 1.207107 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vertex figure |
© | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vertex layers |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lace city in approx. ASCII-art |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||
x3o w3o w3x x3w o3w o3x o3o W3o o3W o3o o3o W3o o3W o3o x3o w3o w3x x3w o3w o3x | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Coordinates | ((1+sqrt(2))/2, (1+sqrt(2))/2, (1+sqrt(2))/2, 1/2) & all permutations, all changes of sign | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Volume | (101+72 sqrt(2))/6 = 33.803896 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Surface | (168+116 sqrt(2))/3 = 110.682924 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
General of army | (is itself convex) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Colonel of regiment |
(is itself locally convex
– uniform polychoral members:
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Dihedral angles | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Face vector | 64, 128, 88, 24 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Confer |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||
External links |
As abstract polytope tat is isomorphic to quitit, thereby replacing the octagons by octagrams, resp. replacing tic by quith.
Note that tat can be thought of as the external blend of 1 rit + 16 tepes + 8 coatics. This decomposition is described as the degenerate segmentoteron oo3oo3xx4ox&#x. – Alternatively, although subdimensioanlly degenerate, tat can be decomposed into 1 sidpith + 16 hexes + 32 tepes + 24 squicufs + 8 cubatics according to xo3oo3ox4xx&#x.
Incidence matrix according to Dynkin symbol
o3o3x4x . . . . | 64 | 3 1 | 3 3 | 1 3 --------+----+-------+-------+----- . . x . | 2 | 96 * | 2 1 | 1 2 . . . x | 2 | * 32 | 0 3 | 0 3 --------+----+-------+-------+----- . o3x . | 3 | 3 0 | 64 * | 1 1 . . x4x | 8 | 4 4 | * 24 | 0 2 --------+----+-------+-------+----- o3o3x . ♦ 4 | 6 0 | 4 0 | 16 * . o3x4x ♦ 24 | 24 12 | 8 6 | * 8 snubbed forms: o3o3β4x, o3o3x4s, o3o3β4β
o3o3/2x4x . . . . | 64 | 3 1 | 3 3 | 1 3 ----------+----+-------+-------+----- . . x . | 2 | 96 * | 2 1 | 1 2 . . . x | 2 | * 32 | 0 3 | 0 3 ----------+----+-------+-------+----- . o3/2x . | 3 | 3 0 | 64 * | 1 1 . . x4x | 8 | 4 4 | * 24 | 0 2 ----------+----+-------+-------+----- o3o3/2x . ♦ 4 | 6 0 | 4 0 | 16 * . o3/2x4x ♦ 24 | 24 12 | 8 6 | * 8
o3/2o3x4x . . . . | 64 | 3 1 | 3 3 | 1 3 ----------+----+-------+-------+----- . . x . | 2 | 96 * | 2 1 | 1 2 . . . x | 2 | * 32 | 0 3 | 0 3 ----------+----+-------+-------+----- . o3x . | 3 | 3 0 | 64 * | 1 1 . . x4x | 8 | 4 4 | * 24 | 0 2 ----------+----+-------+-------+----- o3/2o3x . ♦ 4 | 6 0 | 4 0 | 16 * . o3x4x ♦ 24 | 24 12 | 8 6 | * 8
o3/2o3/2x4x . . . . | 64 | 3 1 | 3 3 | 1 3 ------------+----+-------+-------+----- . . x . | 2 | 96 * | 2 1 | 1 2 . . . x | 2 | * 32 | 0 3 | 0 3 ------------+----+-------+-------+----- . o3/2x . | 3 | 3 0 | 64 * | 1 1 . . x4x | 8 | 4 4 | * 24 | 0 2 ------------+----+-------+-------+----- o3/2o3/2x . ♦ 4 | 6 0 | 4 0 | 16 * . o3/2x4x ♦ 24 | 24 12 | 8 6 | * 8
oooo3xoox4xwwx&#xt → outer heights = 1/sqrt(2) = 0.707107 inner height = 1 (tic || pseudo w-cube || pseudo w-cube || tic) o...3o...4o... | 24 * * * | 2 1 1 0 0 0 0 | 1 2 2 1 0 0 0 | 1 1 2 0 0 .o..3.o..4.o.. | * 8 * * | 0 0 3 1 0 0 0 | 0 0 3 3 0 0 0 | 0 1 3 0 0 ..o.3..o.4..o. | * * 8 * | 0 0 0 1 3 0 0 | 0 0 0 3 3 0 0 | 0 0 3 1 0 ...o3...o4...o | * * * 24 | 0 0 0 0 1 2 1 | 0 0 0 1 2 1 2 | 0 0 2 1 1 -------------------+-----------+---------------------+------------------+---------- .... x... .... | 2 0 0 0 | 24 * * * * * * | 1 1 1 0 0 0 0 | 1 1 1 0 0 .... .... x... | 2 0 0 0 | * 12 * * * * * | 0 2 0 1 0 0 0 | 1 0 2 0 0 oo..3oo..4oo..&#x | 1 1 0 0 | * * 24 * * * * | 0 0 2 1 0 0 0 | 0 1 2 0 0 .oo.3.oo.4.oo.&#x | 0 1 1 0 | * * * 8 * * * | 0 0 0 3 0 0 0 | 0 0 3 0 0 ..oo3..oo4..oo&#x | 0 0 1 1 | * * * * 24 * * | 0 0 0 1 2 0 0 | 0 0 2 1 0 .... ...x .... | 0 0 0 2 | * * * * * 24 * | 0 0 0 0 1 1 1 | 0 0 1 1 1 .... .... ...x | 0 0 0 2 | * * * * * * 12 | 0 0 0 1 0 0 2 | 0 0 2 0 1 -------------------+-----------+---------------------+------------------+---------- o...3x... .... | 3 0 0 0 | 3 0 0 0 0 0 0 | 8 * * * * * * | 1 1 0 0 0 .... x...4x... | 8 0 0 0 | 4 4 0 0 0 0 0 | * 6 * * * * * | 1 0 1 0 0 .... xo.. ....&#x | 2 1 0 0 | 1 0 2 0 0 0 0 | * * 24 * * * * | 0 1 1 0 0 .... .... xwwx&#xt | 2 2 2 2 | 0 1 2 2 2 0 1 | * * * 12 * * * | 0 0 2 0 0 .... ..ox ....&#x | 0 0 1 2 | 0 0 0 0 2 1 0 | * * * * 24 * * | 0 0 1 1 0 ...o3...x .... | 0 0 0 3 | 0 0 0 0 0 3 0 | * * * * * 8 * | 0 0 0 1 1 .... ...x4...x | 0 0 0 8 | 0 0 0 0 0 4 4 | * * * * * * 6 | 0 0 1 0 1 -------------------+-----------+---------------------+------------------+---------- o...3x...4x... ♦ 24 0 0 0 | 24 12 0 0 0 0 0 | 8 6 0 0 0 0 0 | 1 * * * * oo..3xo.. ....&#x ♦ 3 1 0 0 | 3 0 3 0 0 0 0 | 1 0 3 0 0 0 0 | * 8 * * * .... xoox4xwwx&#xt ♦ 8 4 4 8 | 4 4 8 4 8 4 4 | 0 1 4 4 4 0 1 | * * 6 * * ..oo3..ox ....&#x ♦ 0 0 1 3 | 0 0 0 0 3 3 0 | 0 0 0 0 3 1 0 | * * * 8 * ...o3...x4...x ♦ 0 0 0 24 | 0 0 0 0 0 24 12 | 0 0 0 0 0 8 6 | * * * * 1
or o...3o...4o... & | 48 * | 2 1 1 0 | 1 2 2 1 | 1 1 2 .o..3.o..4.o.. & | * 16 | 0 0 3 1 | 0 0 3 3 | 0 1 3 ---------------------+-------+------------+-------------+------- .... x... .... & | 2 0 | 48 * * * | 1 1 1 0 | 1 1 1 .... .... x... & | 2 0 | * 24 * * | 0 2 0 1 | 1 0 2 oo..3oo..4oo..&#x & | 1 1 | * * 48 * | 0 0 2 1 | 0 1 2 .oo.3.oo.4.oo.&#x | 0 2 | * * * 8 | 0 0 0 3 | 0 0 3 ---------------------+-------+------------+-------------+------- o...3x... .... & | 3 0 | 3 0 0 0 | 16 * * * | 1 1 0 .... x...4x... & | 8 0 | 4 4 0 0 | * 12 * * | 1 0 1 .... xo.. ....&#x & | 2 1 | 1 0 2 0 | * * 48 * | 0 1 1 .... .... xwwx&#xt | 4 4 | 0 2 4 2 | * * * 12 | 0 0 2 ---------------------+-------+------------+-------------+------- o...3x...4x... & ♦ 24 0 | 24 12 0 0 | 8 6 0 0 | 2 * * oo..3xo.. ....&#x & ♦ 3 1 | 3 0 3 0 | 1 0 3 0 | * 16 * .... xoox4xwwx&#xt ♦ 16 8 | 8 8 16 4 | 0 2 8 4 | * * 6
xwwxoooo3ooxwwxoo3ooooxwwx&#xt → height(1,2) = height(3,4) = height(5,6) = height(7,8) = 1/2 height(2,3) = height(4,5) = height(6,7) = 1/sqrt(2) = 0.707107 (tet || pseudo w-tet || pseudo (w,x)-tut || pseudo (x,w)-tut || pseudo inv (x,w)-tut || pseudo inv (w,x)-tut || pseudo dual w-tet || dual tet) o.......3o.......3o....... & | 8 * * * | 3 1 0 0 0 0 0 | 3 3 0 0 0 0 | 1 3 0 0 .o......3.o......3.o...... & | * 8 * * | 0 1 3 0 0 0 0 | 0 3 3 0 0 0 | 0 3 1 0 ..o.....3..o.....3..o..... & | * * 24 * | 0 0 1 2 1 0 0 | 0 1 2 1 2 0 | 0 3 1 0 ...o....3...o....3...o.... & | * * * 24 | 0 0 0 0 1 1 2 | 0 1 0 0 2 3 | 0 3 0 1 ----------------------------------+-----------+---------------------+-----------------+-------- x....... ........ ........ & | 2 0 0 0 | 12 * * * * * * | 2 1 0 0 0 0 | 1 2 0 0 oo......3oo......3oo......&#x & | 1 1 0 0 | * 8 * * * * * | 0 3 0 0 0 0 | 0 3 0 0 .oo.....3.oo.....3.oo.....&#x & | 0 1 1 0 | * * 24 * * * * | 0 1 2 0 0 0 | 0 2 1 0 ........ ..x..... ........ & | 0 0 2 0 | * * * 24 * * * | 0 0 1 1 1 0 | 0 2 1 0 ..oo....3..oo....3..oo....&#x & | 0 0 1 1 | * * * * 24 * * | 0 1 0 0 2 0 | 0 3 0 0 ...x.... ........ ........ & | 0 0 0 2 | * * * * * 12 * | 0 1 0 0 0 2 | 0 2 0 1 ...oo...3...oo...3...oo...&#x | 0 0 0 2 | * * * * * * 24 | 0 0 0 0 1 2 | 0 2 0 1 ----------------------------------+-----------+---------------------+-----------------+-------- x.......3o....... ........ & | 3 0 0 0 | 3 0 0 0 0 0 0 | 8 * * * * * | 1 1 0 0 xwwx.... ........ ........&#xt & | 2 2 2 2 | 1 2 2 0 2 1 0 | * 12 * * * * | 0 2 0 0 ........ .ox..... ........&#x & | 0 1 2 0 | 0 0 2 1 0 0 0 | * * 24 * * * | 0 1 1 0 ........ ..x.....3..o..... & | 0 0 3 0 | 0 0 0 3 0 0 0 | * * * 8 * * | 0 1 1 0 ........ ..xwwx.. ........&#xt | 0 0 4 4 | 0 0 0 2 4 0 2 | * * * * 12 * | 0 2 0 0 ...xo... ........ ........&#x & | 0 0 0 3 | 0 0 0 0 0 1 2 | * * * * * 24 | 0 1 0 1 ----------------------------------+-----------+---------------------+-----------------+-------- x.......3o.......3o....... & ♦ 4 0 0 0 | 6 0 0 0 0 0 0 | 4 0 0 0 0 0 | 2 * * * xwwxoo..3ooxwwx.. ........&#xt & ♦ 3 3 9 9 | 3 3 6 6 9 3 6 | 1 3 3 1 3 3 | * 8 * * ........ .ox.....3.oo.....&#x & ♦ 0 1 3 0 | 0 0 3 3 0 0 0 | 0 0 3 1 0 0 | * * 8 * ...xo... ........ ...ox...&#x ♦ 0 0 0 4 | 0 0 0 0 0 2 4 | 0 0 0 0 0 4 | * * * 6
wx3oo3xw *b3oo&#zx → height = 0 (tegum sum of 2 mutually gyrated (w,x)-rits) o.3o.3o. *b3o. | 32 * | 3 1 0 | 3 3 0 | 1 3 0 .o3.o3.o *b3.o | * 32 | 0 1 3 | 0 3 3 | 0 3 1 -------------------+-------+----------+----------+------ .. .. x. .. | 2 0 | 48 * * | 2 1 0 | 1 2 0 oo3oo3oo *b3oo&#x | 1 1 | * 32 * | 0 3 0 | 0 3 0 .x .. .. .. | 0 2 | * * 48 | 0 1 2 | 0 2 1 -------------------+-------+----------+----------+------ .. o.3x. .. | 3 0 | 3 0 0 | 32 * * | 1 1 0 wx .. xw ..&#zx | 4 4 | 2 4 2 | * 24 * | 0 2 0 .x3.o .. .. | 0 3 | 0 0 3 | * * 32 | 0 1 1 -------------------+-------+----------+----------+------ .. o.3x. *b3o. ♦ 4 0 | 6 0 0 | 4 0 0 | 8 * * wx3oo3xw ..&#zx ♦ 12 12 | 12 12 12 | 4 6 4 | * 8 * .x3.o .. *b3.o ♦ 0 4 | 0 0 6 | 0 0 4 | * * 8
wx oo3xo4xw&#zx → height = 0 (tegum sum of (w,x,x)-ticcup and (x,w,w,w)-tes) o. o.3o.4o. | 48 * | 2 1 1 0 | 1 2 1 2 | 1 2 1 .o .o3.o4.o | * 16 | 0 0 3 1 | 0 0 3 3 | 0 3 1 ----------------+-------+------------+-------------+------- .. .. x. .. | 2 0 | 48 * * * | 1 1 0 1 | 1 1 1 .. .. .. x. | 2 0 | * 24 * * | 0 2 1 0 | 1 2 0 oo oo3oo4oo&#x | 1 1 | * * 48 * | 0 0 1 2 | 0 2 1 .x .. .. .. | 0 2 | * * * 8 | 0 0 3 0 | 0 3 0 ----------------+-------+------------+-------------+------- .. o.3x. .. | 3 0 | 3 0 0 0 | 16 * * * | 1 0 1 .. .. x.4x. | 8 0 | 4 4 0 0 | * 12 * * | 1 1 0 wx .. .. xw&#zx | 4 4 | 0 2 4 2 | * * 12 * | 0 2 0 .. .. xo ..&#x | 2 1 | 1 0 2 0 | * * * 48 | 0 1 1 ----------------+-------+------------+-------------+------- .. o.3x.4x. ♦ 24 0 | 24 12 0 0 | 8 6 0 0 | 2 * * wx .. xo4xw&#zx ♦ 16 8 | 8 8 16 4 | 0 2 4 8 | * 6 * .. oo3xo ..&#x ♦ 3 1 | 3 0 3 0 | 1 0 0 3 | * * 16
ox4wx xo4xw&#zx → height = 0 (tegum sum of 2 interchanged (w,x,x)-sodips) o.4o. o.4o. & | 64 | 1 1 2 | 1 3 2 | 1 3 ------------------+----+----------+---------+----- .. .. x. .. & | 2 | 32 * * | 1 2 0 | 1 2 .. .. .. x. & | 2 | * 32 * | 1 0 2 | 0 3 oo4oo oo4oo&#x | 2 | * * 64 | 0 2 1 | 1 2 ------------------+----+----------+---------+----- .. .. x.4x. & | 8 | 4 4 0 | 8 * * | 0 2 ox .. .. ..&#x & | 3 | 1 0 2 | * 64 * | 1 1 .. wx .. xw&#zx | 8 | 0 4 4 | * * 16 | 0 2 ------------------+----+----------+---------+----- ox .. xo ..&#x ♦ 4 | 2 0 4 | 0 4 0 | 16 * ox4wx .. xw&#zx & ♦ 24 | 8 12 16 | 2 8 4 | * 8
© 2004-2025 | top of page |