| Acronym | bodnit | |||
| Name | bi-octa-diminished penteractitriacontiditeron | |||
| Circumradius | sqrt(3/2) = 1.224745 | |||
|
Lace hyper city in approx. ASCII-art |
| |||
| Face vector | 64, 288, 440, 272, 58 | |||
| Confer |
The above lace hypercity shows that odnit can be derived from nit as the reduction of the vertices of 2 q-scaled cubes.
Incidence matrix according to Dynkin symbol
((xxo4ooq xox4oqo qoo))&#zx → height = 0 (tegum sum of squaco and equatorial, square-gyrated (q,x)-tes) o..4o.. o..4o.. o.. | 32 * | 4 4 0 0 | 2 4 8 4 4 0 0 | 4 4 8 12 1 0 | 1 4 2 4 .o.4.o. .o.4.o. .o. & | * 32 | 0 4 2 4 | 0 0 8 2 8 1 6 | 0 4 4 8 2 2 | 0 2 3 4 ------------------------------+-------+--------------+-----------------------+--------------------+---------- x.. ... ... ... ... & | 2 0 | 64 * * * | 1 2 2 1 0 0 0 | 3 2 4 2 0 0 | 1 3 1 2 oo.4oo. oo.4oo. oo. &#x & | 1 1 | * 128 * * | 0 0 2 1 2 0 0 | 0 1 2 4 1 0 | 0 1 2 2 .x. ... ... ... ... & | 0 2 | * * 32 * | 0 0 4 0 0 1 2 | 0 4 2 4 0 1 | 0 2 2 2 .oo4.oo .oo4.oo .oo &#x | 0 2 | * * * 64 | 0 0 0 0 2 0 2 | 0 0 0 4 1 1 | 0 0 2 2 ------------------------------+-------+--------------+-----------------------+--------------------+---------- x..4o.. ... ... ... & | 4 0 | 4 0 0 0 | 16 * * * * * * | 2 2 0 0 0 0 | 1 2 1 0 x.. ... x.. ... ... & | 4 0 | 4 0 0 0 | * 32 * * * * * | 2 0 2 0 0 0 | 1 2 0 1 xx. ... ... ... ... &#x & | 2 2 | 1 2 1 0 | * * 128 * * * * | 0 1 1 1 0 0 | 0 1 1 1 ... ... xo. ... ... &#x & | 2 1 | 1 2 0 0 | * * * 64 * * * | 0 0 2 2 0 0 | 0 1 1 2 ooo4ooo ooo4ooo ooo &#x | 1 2 | 0 2 0 1 | * * * * 128 * * | 0 0 0 2 1 0 | 0 0 2 1 .x.4.o. ... ... ... & | 0 4 | 0 0 4 0 | * * * * * 8 * | 0 4 0 0 0 0 | 0 2 2 0 .xo ... ... ... ... &#x & | 0 3 | 0 0 1 2 | * * * * * * 64 | 0 0 0 2 0 1 | 0 0 1 2 ------------------------------+-------+--------------+-----------------------+--------------------+---------- x..4o.. x.. ... ... & ♦ 8 0 | 12 0 0 0 | 2 4 0 0 0 0 0 | 16 * * * * * | 1 1 0 0 xx.4oo. ... ... ... &#x & ♦ 4 4 | 4 4 4 0 | 1 0 4 0 0 1 0 | * 32 * * * * | 0 1 1 0 xx. ... xo. ... ... &#x & ♦ 4 2 | 4 4 1 0 | 0 1 2 2 0 0 0 | * * 64 * * * | 0 1 0 1 xxo ... ... ... ... &#x & ♦ 3 2 | 1 4 1 2 | 0 0 1 1 2 0 1 | * * * 128 * * | 0 0 1 1 ((... ooq ... oqo qoo))&#zx ♦ 2 4 | 0 8 0 4 | 0 0 0 0 8 0 0 | * * * * 16 * | 0 0 2 0 .xo ... .ox ... ... &#x ♦ 0 4 | 0 0 2 4 | 0 0 0 0 0 0 4 | * * * * * 16 | 0 0 0 2 ------------------------------+-------+--------------+-----------------------+--------------------+---------- x..4o.. x..4o.. ... ♦ 16 0 | 32 0 0 0 | 8 16 0 0 0 0 0 | 8 0 0 0 0 0 | 2 * * * xx.4oo. xo. ... ... &#x & ♦ 8 4 | 12 8 4 0 | 2 4 8 4 0 1 0 | 1 2 4 0 0 0 | * 16 * * ((xxo4ooq ... oqo qoo))&#zx & ♦ 8 12 | 8 32 8 16 | 2 0 16 8 32 2 8 | 0 4 0 16 4 0 | * * 8 * xxo ... xox ... ... &#x ♦ 4 4 | 4 8 2 4 | 0 1 4 4 4 0 4 | 0 0 2 4 0 1 | * * * 32
© 2004-2026 | top of page |