Acronym sidtaxhiap
Name small ditetrahedrary hexacontahecatonicosachoron antiprism
Circumradius sqrt[(23+9 sqrt(5))/8] = 2.321762
Vertex figure
 ©
Face vector 1200, 9600, 13440, 6960, 1322
Confer
general polytopal classes:
segmentotera  
External
links
hedrondude   polytopewiki  

As abstract polytope sidtaxhiap is isomorphic to gadtaxhiap, thereby replacing pentagrams and pentagons, resp. replacing sidtid by gidtid and stap by pap, resp. replacing sidtaxhi by gadtaxhi and sidtidap by gidtidap.


Incidence matrix according to Dynkin symbol

β2o3o3o5β

both( . . . . . ) | 1200 |    4   12 |    6   18   12 |   6   4   16    4 |   4 1    5
------------------+------+-----------+----------------+-------------------+-----------
both( s . 2 . s ) |    2 | 2400    * |    0    6    0 |   3   0    6    0 |   3 0    2
sefa( . . . o5β ) |    2 |    * 7200 |    1    1    2 |   1   2    2    1 |   2 1    1
------------------+------+-----------+----------------+-------------------+-----------
      . . . o5β   |    5 |    0    5 | 1440    *    * |   1   2    0    0 |   2 1    0
sefa( β 2 . o5β ) |    3 |    2    1 |    * 7200    * |   1   0    2    0 |   2 0    1
sefa( . . o3o5β ) |    3 |    0    3 |    *    * 4800 |   0   1    1    1 |   1 1    1
------------------+------+-----------+----------------+-------------------+-----------
      β 2 . o5β      10 |   10   10 |    2   10    0 | 720   *    *    * |   2 0    0
      . . o3o5β      20 |    0   60 |   12    0   20 |   * 240    *    * |   1 1    0
sefa( β 2 o3o5β )     4 |    3    3 |    0    3    1 |   *   * 4800    * |   1 0    1
sefa( . o3o3o5β )     4 |    0    6 |    0    0    4 |   *   *    * 1200 |   0 1    1
------------------+------+-----------+----------------+-------------------+-----------
      β 2 o3o5β      40 |   60  120 |   24  120   40 |  12   2   40    0 | 120 *    *
      . o3o3o5β     600 |    0 3600 |  720    0 2400 |   0 120    0  600 |   * 2    *
sefa( β2o3o3o5β )     5 |    4    6 |    0    6    4 |   0   0    4    1 |   * * 1200

starting figure: x o3o3o5x

oo3oo3xo5/2ox3*b&#x   → height = sqrt[(sqrt(5)-1)/2] = 0.786151
(smaller version of: sidtaxhi || sidtaxhi)

o.3o.3o.5/2o.3*b    | 600   * |   12    4    0 |   12   6   12    6    0   0 |   4   4   12    4   6   0   0 | 1   4   1   4 0
.o3.o3.o5/2.o3*b    |   * 600 |    0    4   12 |    0   0    6   12   12   6 |   0   0    4   12   6   4   4 | 0   1   4   4 1
--------------------+---------+----------------+-----------------------------+-------------------------------+----------------
.. .. x.   ..       |   2   0 | 3600    *    * |    2   1    1    0    0   0 |   1   2    2    0   1   0   0 | 1   1   0   2 0
oo3oo3oo5/2oo3*b&#x |   1   1 |    * 2400    * |    0   0    3    3    0   0 |   0   0    3    3   3   0   0 | 0   1   1   3 0
.. .. ..   .x       |   0   2 |    *    * 3600 |    0   0    0    1    2   1 |   0   0    0    2   1   1   2 | 0   0   1   2 1
--------------------+---------+----------------+-----------------------------+-------------------------------+----------------
.. o.3x.   ..       |   3   0 |    3    0    0 | 2400   *    *    *    *   * |   1   1    1    0   0   0   0 | 1   1   0   1 0
.. .. x.5/2o.       |   5   0 |    5    0    0 |    * 720    *    *    *   * |   0   2    0    0   1   0   0 | 1   0   0   2 0
.. .. xo   ..   &#x |   2   1 |    1    2    0 |    *   * 3600    *    *   * |   0   0    2    0   1   0   0 | 0   1   0   2 0
.. .. ..   ox   &#x |   1   2 |    0    2    1 |    *   *    * 3600    *   * |   0   0    0    2   1   0   0 | 0   0   1   2 0
.. .o ..   .x3*b    |   0   3 |    0    0    3 |    *   *    *    * 2400   * |   0   0    0    1   0   1   1 | 0   0   1   1 1
.. .. .o5/2.x       |   0   5 |    0    0    5 |    *   *    *    *    * 720 |   0   0    0    0   1   0   2 | 0   0   0   2 1
--------------------+---------+----------------+-----------------------------+-------------------------------+----------------
o.3o.3x.   ..          4   0 |    6    0    0 |    4   0    0    0    0   0 | 600   *    *    *   *   *   * | 1   1   0   0 0
.. o.3x.5/2o.3*b      20   0 |   60    0    0 |   20  12    0    0    0   0 |   * 120    *    *   *   *   * | 1   0   0   1 0
.. oo3xo   ..   &#x    3   1 |    3    3    0 |    1   0    3    0    0   0 |   *   * 2400    *   *   *   * | 0   1   0   1 0
.. oo ..   ox3*b&#x    1   3 |    0    3    3 |    0   0    0    3    1   0 |   *   *    * 2400   *   *   * | 0   0   1   1 0
.. .. xo5/2ox   &#x    5   5 |    5   10    5 |    0   1    5    5    0   1 |   *   *    *    * 720   *   * | 0   0   0   2 0
.o3.o ..   .x3*b       0   4 |    0    0    6 |    0   0    0    0    4   0 |   *   *    *    *   * 600   * | 0   0   1   0 1
.. .o3.o5/2.x3*b       0  20 |    0    0   60 |    0   0    0    0   20  12 |   *   *    *    *   *   * 120 | 0   0   0   1 1
--------------------+---------+----------------+-----------------------------+-------------------------------+----------------
o.3o.3x.5/2o.3*b     600   0 | 3600    0    0 | 2400 720    0    0    0   0 | 600 120    0    0   0   0   0 | 1   *   *   * *
oo3oo3xo   ..   &#x    4   1 |    6    4    0 |    4   0    6    0    0   0 |   1   0    4    0   0   0   0 | * 600   *   * *
oo3oo ..   ox3*b&#x    1   4 |    0    4    6 |    0   0    0    6    4   0 |   0   0    0    4   0   1   0 | *   * 600   * *
.. oo3xo5/2ox3*b&#x   20  20 |   60   60   60 |   20  12   60   60   20  12 |   0   1   20   20  12   0   1 | *   *   * 120 *
.o3.o3.o5/2.x3*b       0 600 |    0    0 3600 |    0   0    0    0 2400 720 |   0   0    0    0   0 600 120 | *   *   *   * 1

© 2004-2024
top of page