Acronym | sidtaxhiap |
Name | small ditetrahedrary hexacontahecatonicosachoron antiprism |
Circumradius | sqrt[(23+9 sqrt(5))/8] = 2.321762 |
Vertex figure |
© |
Face vector | 1200, 9600, 13440, 6960, 1322 |
Confer |
|
External links |
As abstract polytope sidtaxhiap is isomorphic to gadtaxhiap, thereby replacing pentagrams and pentagons, resp. replacing sidtid by gidtid and stap by pap, resp. replacing sidtaxhi by gadtaxhi and sidtidap by gidtidap.
Incidence matrix according to Dynkin symbol
β2o3o3o5β both( . . . . . ) | 1200 | 4 12 | 6 18 12 | 6 4 16 4 | 4 1 5 ------------------+------+-----------+----------------+-------------------+----------- both( s . 2 . s ) | 2 | 2400 * | 0 6 0 | 3 0 6 0 | 3 0 2 sefa( . . . o5β ) | 2 | * 7200 | 1 1 2 | 1 2 2 1 | 2 1 1 ------------------+------+-----------+----------------+-------------------+----------- . . . o5β | 5 | 0 5 | 1440 * * | 1 2 0 0 | 2 1 0 sefa( β 2 . o5β ) | 3 | 2 1 | * 7200 * | 1 0 2 0 | 2 0 1 sefa( . . o3o5β ) | 3 | 0 3 | * * 4800 | 0 1 1 1 | 1 1 1 ------------------+------+-----------+----------------+-------------------+----------- β 2 . o5β ♦ 10 | 10 10 | 2 10 0 | 720 * * * | 2 0 0 . . o3o5β ♦ 20 | 0 60 | 12 0 20 | * 240 * * | 1 1 0 sefa( β 2 o3o5β ) ♦ 4 | 3 3 | 0 3 1 | * * 4800 * | 1 0 1 sefa( . o3o3o5β ) ♦ 4 | 0 6 | 0 0 4 | * * * 1200 | 0 1 1 ------------------+------+-----------+----------------+-------------------+----------- β 2 o3o5β ♦ 40 | 60 120 | 24 120 40 | 12 2 40 0 | 120 * * . o3o3o5β ♦ 600 | 0 3600 | 720 0 2400 | 0 120 0 600 | * 2 * sefa( β2o3o3o5β ) ♦ 5 | 4 6 | 0 6 4 | 0 0 4 1 | * * 1200 starting figure: x o3o3o5x
oo3oo3xo5/2ox3*b&#x → height = sqrt[(sqrt(5)-1)/2] = 0.786151
(smaller version of: sidtaxhi || sidtaxhi)
o.3o.3o.5/2o.3*b | 600 * | 12 4 0 | 12 6 12 6 0 0 | 4 4 12 4 6 0 0 | 1 4 1 4 0
.o3.o3.o5/2.o3*b | * 600 | 0 4 12 | 0 0 6 12 12 6 | 0 0 4 12 6 4 4 | 0 1 4 4 1
--------------------+---------+----------------+-----------------------------+-------------------------------+----------------
.. .. x. .. | 2 0 | 3600 * * | 2 1 1 0 0 0 | 1 2 2 0 1 0 0 | 1 1 0 2 0
oo3oo3oo5/2oo3*b&#x | 1 1 | * 2400 * | 0 0 3 3 0 0 | 0 0 3 3 3 0 0 | 0 1 1 3 0
.. .. .. .x | 0 2 | * * 3600 | 0 0 0 1 2 1 | 0 0 0 2 1 1 2 | 0 0 1 2 1
--------------------+---------+----------------+-----------------------------+-------------------------------+----------------
.. o.3x. .. | 3 0 | 3 0 0 | 2400 * * * * * | 1 1 1 0 0 0 0 | 1 1 0 1 0
.. .. x.5/2o. | 5 0 | 5 0 0 | * 720 * * * * | 0 2 0 0 1 0 0 | 1 0 0 2 0
.. .. xo .. &#x | 2 1 | 1 2 0 | * * 3600 * * * | 0 0 2 0 1 0 0 | 0 1 0 2 0
.. .. .. ox &#x | 1 2 | 0 2 1 | * * * 3600 * * | 0 0 0 2 1 0 0 | 0 0 1 2 0
.. .o .. .x3*b | 0 3 | 0 0 3 | * * * * 2400 * | 0 0 0 1 0 1 1 | 0 0 1 1 1
.. .. .o5/2.x | 0 5 | 0 0 5 | * * * * * 720 | 0 0 0 0 1 0 2 | 0 0 0 2 1
--------------------+---------+----------------+-----------------------------+-------------------------------+----------------
o.3o.3x. .. ♦ 4 0 | 6 0 0 | 4 0 0 0 0 0 | 600 * * * * * * | 1 1 0 0 0
.. o.3x.5/2o.3*b ♦ 20 0 | 60 0 0 | 20 12 0 0 0 0 | * 120 * * * * * | 1 0 0 1 0
.. oo3xo .. &#x ♦ 3 1 | 3 3 0 | 1 0 3 0 0 0 | * * 2400 * * * * | 0 1 0 1 0
.. oo .. ox3*b&#x ♦ 1 3 | 0 3 3 | 0 0 0 3 1 0 | * * * 2400 * * * | 0 0 1 1 0
.. .. xo5/2ox &#x ♦ 5 5 | 5 10 5 | 0 1 5 5 0 1 | * * * * 720 * * | 0 0 0 2 0
.o3.o .. .x3*b ♦ 0 4 | 0 0 6 | 0 0 0 0 4 0 | * * * * * 600 * | 0 0 1 0 1
.. .o3.o5/2.x3*b ♦ 0 20 | 0 0 60 | 0 0 0 0 20 12 | * * * * * * 120 | 0 0 0 1 1
--------------------+---------+----------------+-----------------------------+-------------------------------+----------------
o.3o.3x.5/2o.3*b ♦ 600 0 | 3600 0 0 | 2400 720 0 0 0 0 | 600 120 0 0 0 0 0 | 1 * * * *
oo3oo3xo .. &#x ♦ 4 1 | 6 4 0 | 4 0 6 0 0 0 | 1 0 4 0 0 0 0 | * 600 * * *
oo3oo .. ox3*b&#x ♦ 1 4 | 0 4 6 | 0 0 0 6 4 0 | 0 0 0 4 0 1 0 | * * 600 * *
.. oo3xo5/2ox3*b&#x ♦ 20 20 | 60 60 60 | 20 12 60 60 20 12 | 0 1 20 20 12 0 1 | * * * 120 *
.o3.o3.o5/2.x3*b ♦ 0 600 | 0 0 3600 | 0 0 0 0 2400 720 | 0 0 0 0 0 600 120 | * * * * 1
© 2004-2024 | top of page |