| Acronym | hedjak |
| Name |
heptadiminished jak, square || hin |
| Circumradius | sqrt(2/3) = 0.816497 |
|
Lace city in approx. ASCII-art |
4
h H -- hin
\
+-- tedhin
wobei
4 = {4}
h = hex
H = gyro hex
|
| Coordinates |
|
| Face vector | 20, 116, 289, 328, 166, 31 |
| Confer |
|
The icosiheptaheptacontidipeton (jak) could be given as point || hin || tac. Its tridiminishing (tedjak) chops off 3 hinpies, in fact one vertex from the first layer and two opposite ones from the third layer, leaving there the equatorial hex only. That one then will be gyrated to either of the other two hexes, from which hin could be thought of as a segmentoteron. If this remaining hex of the third layer is being thought of as a tegum sum of 2 perp. squares, and the vertices of one such square are being omitted as well, then this polyexon will be derived.
Incidence matrix according to Dynkin symbol
(xo)o3(oo)o3(ox)o (xo)x (ox)x&#x → height(1,2) = 0
height(1,3) = height(2,3) = sqrt(3/8) = 0.612372
(hin || part. para square)
(o.).3(o.).3(o.). (o.). (o.). & | 16 * | 3 1 6 2 0 | 3 18 9 6 2 1 6 0 | 1 8 6 12 3 6 3 1 18 9 | 2 5 3 2 3 8 6 12 3 | 1 1 2 5 3
(..)o3(..)o3(..)o (..)o (..)o | * 4 | 0 0 0 8 2 | 0 0 0 12 8 8 12 1 | 0 0 0 0 0 8 12 8 24 24 | 0 0 0 2 8 8 6 24 12 | 0 2 1 8 6
------------------------------------+------+--------------+------------------------+-----------------------------+-------------------------+-----------
x. . .. . .. . .. . .. . & | 2 0 | 24 * * * * | 2 4 0 2 0 0 0 0 | 1 4 2 2 0 4 1 0 4 0 | 2 2 1 2 2 4 2 2 0 | 1 1 2 2 1
.. . .. . .. . x. . .. . & | 2 0 | * 8 * * * | 0 0 6 0 2 0 0 0 | 0 0 0 6 3 0 0 1 0 6 | 0 2 3 0 0 0 0 6 3 | 1 0 0 2 3
(oo).3(oo).3(oo). (oo). (oo).&#x | 2 0 | * * 48 * * | 0 4 2 0 0 0 1 0 | 0 2 2 4 1 0 0 0 4 2 | 1 2 2 0 0 2 2 4 1 | 1 0 1 2 2
(o.)o3(o.)o3(o.)o (o.)o (o.)o&#x & | 1 1 | * * * 32 * | 0 0 0 3 1 1 3 0 | 0 0 0 0 0 3 3 1 9 6 | 0 0 0 1 3 4 3 9 3 | 0 1 1 4 3
.. . .. . .. . .. x .. . & | 0 2 | * * * * 4 | 0 0 0 0 4 4 0 1 | 0 0 0 0 0 0 6 8 0 12 | 0 0 0 0 4 0 0 12 12 | 0 1 0 4 6
------------------------------------+------+--------------+------------------------+-----------------------------+-------------------------+-----------
x. .3 o. . .. . .. . .. . & | 3 0 | 3 0 0 0 0 | 16 * * * * * * * | 1 2 0 0 0 2 0 0 0 0 | 2 1 0 2 1 2 0 0 0 | 1 1 2 1 0
(xo). .. . .. . .. . .. .&#x & | 3 0 | 1 0 2 0 0 | * 96 * * * * * * | 0 1 1 1 0 0 0 0 1 0 | 1 1 1 0 0 1 1 1 0 | 1 0 1 1 1
.. . .. . .. . (xo). .. .&#x & | 3 0 | 0 1 2 0 0 | * * 48 * * * * * | 0 0 0 2 1 0 0 0 0 1 | 0 1 2 0 0 0 0 2 1 | 1 0 0 1 2
(x.)o .. . .. . .. . .. .&#x & | 2 1 | 1 0 0 2 0 | * * * 48 * * * * | 0 0 0 0 0 2 1 0 2 0 | 0 0 0 1 2 2 1 2 0 | 0 1 1 2 1
.. . .. . .. . (x.)x .. .&#x & | 2 2 | 0 1 0 2 1 | * * * * 16 * * * | 0 0 0 0 0 0 0 1 0 3 | 0 0 0 0 0 0 0 3 3 | 0 0 0 1 3
.. . .. . .. . .. . (o.)x&#x & | 1 2 | 0 0 0 2 1 | * * * * * 16 * * | 0 0 0 0 0 0 3 1 0 3 | 0 0 0 0 3 0 0 6 3 | 0 1 0 3 3
(oo)o3(oo)o3(oo)o (oo)o (oo)o&#x | 2 1 | 0 0 1 2 0 | * * * * * * 48 * | 0 0 0 0 0 0 0 0 4 2 | 0 0 0 0 0 2 2 4 1 | 0 0 1 2 2
.. . .. . .. . .. x .. x | 0 4 | 0 0 0 0 4 | * * * * * * * 1 ♦ 0 0 0 0 0 0 0 8 0 0 | 0 0 0 0 0 0 0 0 12 | 0 0 0 0 6
------------------------------------+------+--------------+------------------------+-----------------------------+-------------------------+-----------
x. .3 o. .3 o. . .. . .. . & ♦ 4 0 | 6 0 0 0 0 | 4 0 0 0 0 0 0 0 | 4 * * * * * * * * * | 2 0 0 2 0 0 0 0 0 | 1 1 2 0 0
(xo).3(oo). .. . .. . .. .&#x & ♦ 4 0 | 3 0 3 0 0 | 1 3 0 0 0 0 0 0 | * 32 * * * * * * * * | 1 1 0 0 0 1 0 0 0 | 1 0 1 1 0
(xo). .. . (ox). .. . .. .&#x ♦ 4 0 | 2 0 4 0 0 | 0 4 0 0 0 0 0 0 | * * 24 * * * * * * * | 1 0 1 0 0 0 1 0 0 | 1 0 1 0 1
(xo). .. . .. . .. . (ox).&#x & ♦ 4 0 | 1 1 4 0 0 | 0 2 2 0 0 0 0 0 | * * * 48 * * * * * * | 0 1 1 0 0 0 0 1 0 | 1 0 0 1 1
.. . .. . .. . (xo). (ox).&#x ♦ 4 0 | 0 2 4 0 0 | 0 0 4 0 0 0 0 0 | * * * * 12 * * * * * | 0 0 2 0 0 0 0 0 1 | 1 0 0 0 2
(x.)o3(o.)o .. . .. . .. .&#x & ♦ 3 1 | 3 0 0 3 0 | 1 0 0 3 0 0 0 0 | * * * * * 32 * * * * | 0 0 0 1 1 1 0 0 0 | 0 1 1 1 0
(x.)o .. . .. . .. . (o.)x&#x & ♦ 2 2 | 1 0 0 4 1 | 0 0 0 2 0 2 0 0 | * * * * * * 24 * * * | 0 0 0 0 2 0 0 2 0 | 0 1 0 2 1
.. . .. . .. . (x.)x (o.)x&#x & ♦ 2 4 | 0 1 0 4 4 | 0 0 0 0 2 2 0 1 | * * * * * * * 8 * * | 0 0 0 0 0 0 0 0 3 | 0 0 0 0 3
(xo)o .. . .. . .. . .. .&#x & ♦ 3 1 | 1 0 2 3 0 | 0 1 0 1 0 0 2 0 | * * * * * * * * 96 * | 0 0 0 0 0 1 1 1 0 | 0 0 1 1 1
.. . .. . .. . (xo)x .. .&#x & ♦ 3 2 | 0 1 2 4 1 | 0 0 1 0 1 1 2 0 | * * * * * * * * * 48 | 0 0 0 0 0 0 0 2 1 | 0 0 0 1 2
------------------------------------+------+--------------+------------------------+-----------------------------+-------------------------+-----------
(xo).3(oo).3(ox). .. . .. .&#x ♦ 8 0 | 12 0 12 0 0 | 8 24 0 0 0 0 0 0 | 2 8 6 0 0 0 0 0 0 0 | 4 * * * * * * * * | 1 0 1 0 0
(xo).3(oo). .. . .. . (ox).&#x & ♦ 5 0 | 3 1 6 0 0 | 1 6 3 0 0 0 0 0 | 0 2 0 3 0 0 0 0 0 0 | * 16 * * * * * * * | 1 0 0 1 0
(xo). .. . (ox). (xo). (ox).&#(zx) ♦ 8 0 | 4 4 16 0 0 | 0 16 16 0 0 0 0 0 | 0 0 4 8 4 0 0 0 0 0 | * * 6 * * * * * * | 1 0 0 0 1
(x.)o3(o.)o3(o.)o .. . .. .&#x & ♦ 4 1 | 6 0 0 4 0 | 4 0 0 6 0 0 0 0 | 1 0 0 0 0 4 0 0 0 0 | * * * 8 * * * * * | 0 1 1 0 0
(x.)o3(o.)o .. . .. . (o.)x&#x & ♦ 3 2 | 3 0 0 6 1 | 1 0 0 6 0 3 0 0 | 0 0 0 0 0 2 3 0 0 0 | * * * * 16 * * * * | 0 1 0 1 0
(xo)o3(oo)o .. . .. . .. .&#x & ♦ 4 1 | 3 0 3 4 0 | 1 3 0 3 0 0 3 0 | 0 1 0 0 0 1 0 0 3 0 | * * * * * 32 * * * | 0 0 1 1 0
(xo)o .. . (ox)o .. . .. .&#x & ♦ 4 1 | 2 0 4 4 0 | 0 4 0 2 0 0 4 0 | 0 0 1 0 0 0 0 0 4 0 | * * * * * * 24 * * | 0 0 1 0 1
(xo)o .. . .. . .. . (ox)x&#x & ♦ 4 2 | 1 1 4 6 1 | 0 2 2 2 1 2 4 0 | 0 0 0 1 0 0 1 0 2 2 | * * * * * * * 48 * | 0 0 0 1 1
.. . .. . .. . (xo)x (ox)x&#x ♦ 4 4 | 0 2 4 8 4 | 0 0 4 0 4 4 4 1 | 0 0 0 0 1 0 0 2 0 4 | * * * * * * * * 12 | 0 0 0 0 2
------------------------------------+------+--------------+------------------------+-----------------------------+-------------------------+-----------
(xo).3(oo).3(ox). (xo). (ox).&#(zx) ♦ 16 0 | 24 8 48 0 0 | 16 96 48 0 0 0 0 0 | 4 32 24 48 12 0 0 0 0 0 | 4 16 6 0 0 0 0 0 0 | 1 * * * *
(x.)o3(o.)o3(o.)o .. . (o.)x&#x & ♦ 4 2 | 6 0 0 8 1 | 4 0 0 12 0 4 0 0 | 1 0 0 0 0 8 6 0 0 0 | 0 0 0 2 4 0 0 0 0 | * 4 * * *
(xo)o3(oo)o3(ox)o .. . .. .&#x ♦ 8 1 | 12 0 12 8 0 | 8 24 0 12 0 0 12 0 | 2 8 6 0 0 8 0 0 24 0 | 1 0 0 2 0 8 6 0 0 | * * 4 * *
(xo)o3(oo)o .. . .. . (ox)x&#x & ♦ 5 2 | 3 1 6 8 1 | 1 6 3 6 1 3 6 0 | 0 2 0 3 0 2 3 0 6 3 | 0 1 0 0 1 2 0 3 0 | * * * 16 *
(xo)o .. . (ox)o (xo)x (ox)x&#x ♦ 8 4 | 4 4 16 16 4 | 0 16 16 8 8 8 16 1 | 0 0 4 8 4 0 4 4 16 16 | 0 0 1 0 0 0 4 8 4 | * * * * 6
© 2004-2026 | top of page |