Acronym coasirco, co || sirco, K-4.61
Name cuboctahedron atop small rhombicuboctahedron
Segmentochoron display
Circumradius (1+sqrt(8))/sqrt(7) = 1.447009
Lace city
in approx. ASCII-art
   x4o  o4q  x4o   
                   
o4x  x4x   x4x  o4x
Dihedral angles
  • at {3} between oct and squippy:   arccos[-(3 sqrt(2)-1)/4] = 144.160482°
  • at {3} between oct and squap:   arccos[-(1+sqrt(2))/sqrt(sqrt(128))] = 135.869026°
  • at {3} between squap and squippy:   arccos[-(1+sqrt(2))/sqrt(sqrt(128))] = 135.869026°
  • at {4} between co and squap:   arccos[-1/sqrt(sqrt(8))] = 126.484376°
  • at {3} between co and oct:   arccos[-(3 sqrt(2)-2)/4] = 124.101465°
  • at {4} between sirco and squippy:   arccos[(2-sqrt(2))/2] = 72.968752°
  • at {3} between oct and sirco:   arccos[(3 sqrt(2)-2)/4] = 55.898535°
  • at {4} between sirco and squap:   arccos[1/sqrt(sqrt(8))] = 53.515624°
General of army (is itself convex)
Colonel of regiment (is itself locally convex)
Face vector 36, 120, 112, 28
Confer
related segmentochora:
coaop   coaescu   antitetrawedge  
general polytopal classes:
segmentochora   fundamental lace prisms  
External
links
polytopewiki  

Incidence matrix according to Dynkin symbol

ox3xo4ox&#x   → height = sqrt[2 sqrt(2)-1]/2 = 0.676097
(co || sirco)

o.3o.4o.    | 12  * |  4  4  0  0 | 2 2  2  4  2 0  0 0 | 1 2  1 2 0
.o3.o4.o    |  * 24 |  0  2  2  2 | 0 0  2  1  2 1  2 1 | 0 1  2 1 1
------------+-------+-------------+---------------------+-----------
.. x. ..    |  2  0 | 24  *  *  * | 1 1  0  1  0 0  0 0 | 1 1  0 1 0
oo3oo4oo&#x |  1  1 |  * 48  *  * | 0 0  1  1  1 0  0 0 | 0 1  1 1 0
.x .. ..    |  0  2 |  *  * 24  * | 0 0  1  0  0 1  1 0 | 0 1  1 0 1
.. .. .x    |  0  2 |  *  *  * 24 | 0 0  0  0  1 0  1 1 | 0 0  1 1 1
------------+-------+-------------+---------------------+-----------
o.3x. ..    |  3  0 |  3  0  0  0 | 8 *  *  *  * *  * * | 1 1  0 0 0
.. x.4o.    |  4  0 |  4  0  0  0 | * 6  *  *  * *  * * | 1 0  0 1 0
ox .. ..&#x |  1  2 |  0  2  1  0 | * * 24  *  * *  * * | 0 1  1 0 0
.. xo ..&#x |  2  1 |  1  2  0  0 | * *  * 24  * *  * * | 0 1  0 1 0
.. .. ox&#x |  1  2 |  0  2  0  1 | * *  *  * 24 *  * * | 0 0  1 1 0
.x3.o ..    |  0  3 |  0  0  3  0 | * *  *  *  * 8  * * | 0 1  0 0 1
.x .. .x    |  0  4 |  0  0  2  2 | * *  *  *  * * 12 * | 0 0  1 0 1
.. .o4.x    |  0  4 |  0  0  0  4 | * *  *  *  * *  * 6 | 0 0  0 1 1
------------+-------+-------------+---------------------+-----------
o.3x.4o.     12  0 | 24  0  0  0 | 8 6  0  0  0 0  0 0 | 1 *  * * *
ox3xo ..&#x   3  3 |  3  6  3  0 | 1 0  3  3  0 1  0 0 | * 8  * * *
ox .. ox&#x   1  4 |  0  4  2  2 | 0 0  2  0  2 0  1 0 | * * 12 * *
.. xo4ox&#x   4  4 |  4  8  0  4 | 0 1  0  4  4 0  0 1 | * *  * 6 *
.x3.o4.x      0 24 |  0  0 24 24 | 0 0  0  0  0 8 12 6 | * *  * * 1

qo3xx3oq&#zx || x3o3x   → height = sqrt[2 sqrt(2)-1]/2 = 0.676097
(sirco || co)

o.3o.3o.       . . . | 12  *  * |  2  2  2  0  0  0  0 | 1 1  2  2  1  2 0  0  0 0 0 0 | 1 1 1  2 0 0
.o3.o3.o       . . . |  * 12  * |  0  2  0  2  2  0  0 | 0 1  2  0  0  2 1  1  2 0 0 0 | 1 0 1  2 1 0
.. .. ..       o3o3o |  *  * 12 |  0  0  2  0  2  2  2 | 0 0  0  1  2  2 0  2  1 1 2 1 | 0 1 2  1 1 1
---------------------+----------+----------------------+-------------------------------+-------------
.. x. ..       . . . |  2  0  0 | 12  *  *  *  *  *  * | 1 0  1  1  0  0 0  0  0 0 0 0 | 1 1 0  1 0 0
oo3oo3oo&#x    . . . |  1  1  0 |  * 24  *  *  *  *  * | 0 1  1  0  0  1 0  0  0 0 0 0 | 1 0 1  1 0 0
o.3o.3o.     || o3o3o |  1  0  1 |  *  * 24  *  *  *  * | 0 0  0  1  1  1 0  0  0 0 0 0 | 0 1 1  1 0 0
.. .x ..       . . . |  0  2  0 |  *  *  * 12  *  *  * | 0 0  1  0  0  0 1  0  1 0 0 0 | 1 0 0  1 1 0
.o3.o3.o     || o3o3o |  0  1  1 |  *  *  *  * 24  *  * | 0 0  0  0  0  1 0  1  1 0 0 0 | 0 0 1  1 1 0
.. .. ..       x . . |  0  0  2 |  *  *  *  *  * 12  * | 0 0  0  0  0  0 0  1  0 1 1 0 | 0 0 1  0 1 1
.. .. ..       . . x |  0  0  2 |  *  *  *  *  *  * 12 | 0 0  0  0  1  0 0  0  0 0 1 1 | 0 1 1  0 0 1
---------------------+----------+----------------------+-------------------------------+-------------
.. x.3o.       . . . |  3  0  0 |  3  0  0  0  0  0  0 | 4 *  *  *  *  * *  *  * * * * | 1 1 0  0 0 0
qo .. oq&#zx   . . . |  2  2  0 |  0  4  0  0  0  0  0 | * 6  *  *  *  * *  *  * * * * | 1 0 1  0 0 0
.. xx ..&#x    . . . |  2  2  0 |  1  2  0  1  0  0  0 | * * 12  *  *  * *  *  * * * * | 1 0 0  1 0 0
.. x. ..     || . o . |  2  0  1 |  1  0  2  0  0  0  0 | * *  * 12  *  * *  *  * * * * | 0 1 0  1 0 0
.. .. o.     || . . x |  1  0  2 |  0  0  2  0  0  0  1 | * *  *  * 12  * *  *  * * * * | 0 1 1  0 0 0
oo3oo3oo&#x  || o3o3o |  1  1  1 |  0  1  1  0  1  0  0 | * *  *  *  * 24 *  *  * * * * | 0 0 1  1 0 0
.o3.x ..       . . . |  0  3  0 |  0  0  0  3  0  0  0 | * *  *  *  *  * 4  *  * * * * | 1 0 0  0 1 0
.o .. ..     || x . . |  0  1  2 |  0  0  0  0  2  1  0 | * *  *  *  *  * * 12  * * * * | 0 0 1  0 1 0
.. .x ..     || . o . |  0  2  1 |  0  0  0  1  2  0  0 | * *  *  *  *  * *  * 12 * * * | 0 0 0  1 1 0
.. .. ..       x3o . |  0  0  3 |  0  0  0  0  0  3  0 | * *  *  *  *  * *  *  * 4 * * | 0 0 0  0 1 1
.. .. ..       x . x |  0  0  4 |  0  0  0  0  0  2  2 | * *  *  *  *  * *  *  * * 6 * | 0 0 1  0 0 1
.. .. ..       . o3x |  0  0  3 |  0  0  0  0  0  0  3 | * *  *  *  *  * *  *  * * * 4 | 0 1 0  0 0 1
---------------------+----------+----------------------+-------------------------------+-------------
qo3xx3oq&#zx   . . .  12 12  0 | 12 24  0 12  0  0  0 | 4 6 12  0  0  0 4  0  0 0 0 0 | 1 * *  * * *
.. x.3o.     || . o3x   3  0  3 |  3  0  6  0  0  0  3 | 1 0  0  3  3  0 0  0  0 0 0 1 | * 4 *  * * *
qo .. oq&#zx || x . x   2  2  4 |  0  4  4  0  4  2  2 | 0 1  0  0  2  4 0  2  0 0 1 0 | * * 6  * * *
.. xx ..&#x  || . o .   2  2  1 |  1  2  2  1  2  0  0 | 0 0  1  1  0  2 0  0  1 0 0 0 | * * * 12 * *
.o3.x ..     || x3o .   0  3  3 |  0  0  0  3  6  3  0 | 0 0  0  0  0  0 1  3  3 1 0 0 | * * *  * 4 *
.. .. ..       x3o3x   0  0 12 |  0  0  0  0  0 12 12 | 0 0  0  0  0  0 0  0  0 4 6 4 | * * *  * * 1

© 2004-2024
top of page