Acronym coasirco, co || sirco, K-4.61 Name cuboctahedron atop small rhombicuboctahedron Segmentochoron display Circumradius (1+sqrt(8))/sqrt(7) = 1.447009 Lace cityin approx. ASCII-art ``` x4o o4q x4o o4x x4x x4x o4x ``` Dihedral angles at {3} between oct and squippy:   arccos[-(3 sqrt(2)-1)/4] = 144.160482° at {3} between oct and squap:   arccos[-(1+sqrt(2))/sqrt(sqrt(128))] = 135.869026° at {3} between squap and squippy:   arccos[-(1+sqrt(2))/sqrt(sqrt(128))] = 135.869026° at {4} between co and squap:   arccos[-1/sqrt(sqrt(8))] = 126.484376° at {3} between co and oct:   arccos[-(3 sqrt(2)-2)/4] = 124.101465° at {4} between sirco and squippy:   arccos[(2-sqrt(2))/2] = 72.968752° at {3} between oct and sirco:   arccos[(3 sqrt(2)-2)/4] = 55.898535° at {4} between sirco and squap:   arccos[1/sqrt(sqrt(8))] = 53.515624° General of army (is itself convex) Colonel of regiment (is itself locally convex) Confer related segmentochora: coaop   coaescu   antitetrawedge   general polytopal classes: segmentochora   fundamental lace prisms Externallinks

Incidence matrix according to Dynkin symbol

```ox3xo4ox&#x   → height = sqrt[2 sqrt(2)-1]/2 = 0.676097
(co || sirco)

o.3o.4o.    | 12  * |  4  4  0  0 | 2 2  2  4  2 0  0 0 | 1 2  1 2 0
.o3.o4.o    |  * 24 |  0  2  2  2 | 0 0  2  1  2 1  2 1 | 0 1  2 1 1
------------+-------+-------------+---------------------+-----------
.. x. ..    |  2  0 | 24  *  *  * | 1 1  0  1  0 0  0 0 | 1 1  0 1 0
oo3oo4oo&#x |  1  1 |  * 48  *  * | 0 0  1  1  1 0  0 0 | 0 1  1 1 0
.x .. ..    |  0  2 |  *  * 24  * | 0 0  1  0  0 1  1 0 | 0 1  1 0 1
.. .. .x    |  0  2 |  *  *  * 24 | 0 0  0  0  1 0  1 1 | 0 0  1 1 1
------------+-------+-------------+---------------------+-----------
o.3x. ..    |  3  0 |  3  0  0  0 | 8 *  *  *  * *  * * | 1 1  0 0 0
.. x.4o.    |  4  0 |  4  0  0  0 | * 6  *  *  * *  * * | 1 0  0 1 0
ox .. ..&#x |  1  2 |  0  2  1  0 | * * 24  *  * *  * * | 0 1  1 0 0
.. xo ..&#x |  2  1 |  1  2  0  0 | * *  * 24  * *  * * | 0 1  0 1 0
.. .. ox&#x |  1  2 |  0  2  0  1 | * *  *  * 24 *  * * | 0 0  1 1 0
.x3.o ..    |  0  3 |  0  0  3  0 | * *  *  *  * 8  * * | 0 1  0 0 1
.x .. .x    |  0  4 |  0  0  2  2 | * *  *  *  * * 12 * | 0 0  1 0 1
.. .o4.x    |  0  4 |  0  0  0  4 | * *  *  *  * *  * 6 | 0 0  0 1 1
------------+-------+-------------+---------------------+-----------
o.3x.4o.    ♦ 12  0 | 24  0  0  0 | 8 6  0  0  0 0  0 0 | 1 *  * * *
ox3xo ..&#x ♦  3  3 |  3  6  3  0 | 1 0  3  3  0 1  0 0 | * 8  * * *
ox .. ox&#x ♦  1  4 |  0  4  2  2 | 0 0  2  0  2 0  1 0 | * * 12 * *
.. xo4ox&#x ♦  4  4 |  4  8  0  4 | 0 1  0  4  4 0  0 1 | * *  * 6 *
.x3.o4.x    ♦  0 24 |  0  0 24 24 | 0 0  0  0  0 8 12 6 | * *  * * 1
```