Acronym | gyrich |
Name | gyrated rectified cubical honeycomb |
Confer |
|
External links |
This scaliform honeycomb is derived from rich by gyration along a parallel set of thats. Thereby all co change into tobcues.
Using the same planes as true dissections too, each tobcu would split in pairs of tricues. This then would lead to 6Q3-2S3-ortho.
Incidence matrix according to Dynkin symbol
s∞o2s6o3x (N → ∞) demi( . . . . . ) | 3N | 2 4 2 | 1 1 6 4 | 2 4 ------------------+----+----------+-----------+---- demi( . . . . x ) | 2 | 3N * * | 1 0 0 2 | 0 3 s 2 s . . | 2 | * 6N * | 0 0 2 1 | 1 2 sefa( . . s6o . ) | 2 | * * 3N | 0 1 2 0 | 2 1 ------------------+----+----------+-----------+---- demi( . . . o3x ) | 3 | 3 0 0 | N * * * | 0 2 . . s6o . | 3 | 0 0 3 | * N * * | 2 0 sefa( s 2 s6o . ) | 3 | 0 2 1 | * * 6N * | 1 1 sefa( s 2 s 2 x ) | 4 | 2 2 0 | * * * 3N | 0 2 ------------------+----+----------+-----------+---- s 2 s6o . ♦ 6 | 0 6 6 | 0 2 6 0 | N * sefa( s∞o2s6o3x ) ♦ 12 | 9 12 3 | 2 0 6 6 | * N starting figure: x∞o x6o3x
© 2004-2025 | top of page |