Acronym gyrich
Name gyrated rectified cubical honeycomb
Confer
uniform relative:
rich  
related CRF honeycombs:
6Q3-2S3-ortho   3Q3-S3-2P6-2P3-ortho   rigytoh  
general polytopal classes:
scaliform  
External
links
polytopewiki

This scaliform honeycomb is derived from rich by gyration along a parallel set of thats. Thereby all co change into tobcues.

Using the same planes as true dissections too, each tobcu would split in pairs of tricues. This then would lead to 6Q3-2S3-ortho.


Incidence matrix according to Dynkin symbol

s∞o2s6o3x   (N → ∞)

demi( . . . . . ) | 3N |  2  4  2 | 1 1  6  4 | 2 4
------------------+----+----------+-----------+----
demi( . . . . x ) |  2 | 3N  *  * | 1 0  0  2 | 0 3
      s 2 s . .   |  2 |  * 6N  * | 0 0  2  1 | 1 2
sefa( . . s6o . ) |  2 |  *  * 3N | 0 1  2  0 | 2 1
------------------+----+----------+-----------+----
demi( . . . o3x ) |  3 |  3  0  0 | N *  *  * | 0 2
      . . s6o .   |  3 |  0  0  3 | * N  *  * | 2 0
sefa( s 2 s6o . ) |  3 |  0  2  1 | * * 6N  * | 1 1
sefa( s 2 s 2 x ) |  4 |  2  2  0 | * *  * 3N | 0 2
------------------+----+----------+-----------+----
      s 2 s6o .     6 |  0  6  6 | 0 2  6  0 | N *
sefa( s∞o2s6o3x )  12 |  9 12  3 | 2 0  6  6 | * N

starting figure: x∞o x6o3x

© 2004-2025
top of page