Acronym n/d-dow
Name n/d-grammal disphenoid,
n/d-grammal biwedge,
{n/d} || perp {n/d}
Circumradius sqrt[1+1/(2 sin2(π d/n))]/2
Lace hyper city
in approx. ASCII-art
                       
                       
                       
                       
        x-n/d-o        
                       
                       
                       
                       
{n/d}
        o-n/d-o        
                       
                       
o-n/d-o         o-n/d-o
                       
                       
                       
                       
   o-n/d-o   o-n/d-o   
perp {n/d}
Dual (selfdual)
Especially hix (n=3,d=1)   stadow (n=5,d=2)   shadow (n=7,d=2)  
Confer
general polytopal classes:
scaliform  

These self-dual polytera are obtained as the pyramid product of 2 n/d-grams.

In order to become at least scaliform, i.e. the lacing edges shall have the same size as those of the pair of offset perpendicular bases, there is the following restriction to the rational number n/d of the polygram: n < 4d < 2n. The first inequality here is derived from the below given height formula, the second is trivial.

Right this restriction then shows that the only convex case, i.e. using d = 1, would occur for n = 3, which then is even more symmetrical, in fact regular: hix.


Incidence matrix according to Dynkin symbol

xo-n/d-oo ox-n/d-oo&#x   → height = sqrt[1-1/(2 sin2(π d/n))]
                           n < 4d < 2n

o.-n/d-o. o.-n/d-o.    | n *  2  n 0 | 1 2n  n 0 | n 2n 1 | n 2
.o-n/d-.o .o-n/d-.o    | * n  0  n 2 | 0  n 2n 1 | 1 2n n | 2 n
-----------------------+-----+--------+-----------+--------+----
x.     .. ..     ..    | 2 0 | n  * *  1  n  0 0 | n  n 0 | n 1
oo-n/d-oo oo-n/d-oo&#x | 1 1 | * nn *  0  2  2 0 | 1  4 1 | 2 2
..     .. .x     ..    | 0 2 | *  * n  0  0  n 1 | 0  n n | 1 n
-----------------------+-----+--------+-----------+--------+----
x.-n/d-o. ..     ..    | n 0 | n  0 0 | 1  *  * * | n  0 0 | n 0
xo     .. ..     ..&#x | 2 1 | 1  2 0 | * nn  * * | 1  2 0 | 2 1
..     .. ox     ..&#x | 1 2 | 0  2 1 | *  * nn * | 0  2 1 | 1 2
..     .. .x-n/d-.o    | 0 n | 0  0 n | *  *  * 1 | 0  0 n | 0 n
-----------------------+-----+--------+-----------+--------+----
xo-n/d-oo ..     ..&#x  n 1 | n  n 0 | 1  n  0 0 | n  * * | 2 0
xo     .. ox     ..&#x  2 2 | 1  4 1 | 0  2  2 0 | * nn * | 1 1
..     .. ox-n/d-oo&#x  1 n | 0  n n | 0  0  n 1 | *  * n | 0 2
-----------------------+-----+--------+-----------+--------+----
xo-n/d-oo ox     ..&#x  n 2 | n 2n 1 | 1 2n  n 0 | 2  n 0 | n *
xo     .. ox-n/d-oo&#x  2 n | 1 2n n | 0  n 2n 1 | 0  n 2 | * n
or
o.-n/d-o. o.-n/d-o.    & |  2n    2  n | 1  3n | n+1 2n | n+2
-------------------------+-----+--------+-------+--------+----
x.     .. ..     ..    & |   2 |  2n  *  1   n |   n  n | n+1
oo-n/d-oo oo-n/d-oo&#x   |   2 |   * nn  0   4 |   2  4 |   4
-------------------------+-----+--------+-------+--------+----
x.-n/d-o. ..     ..    & |   n |   n  0 | 2   * |   n  0 |   n
xo     .. ..     ..&#x & |   3 |   1  2 | * 2nn |   1  2 |   3
-------------------------+-----+--------+-------+--------+----
xo-n/d-oo ..     ..&#x &  n+1 |   n  n | 1   n |  2n  * |   2
xo     .. ox     ..&#x      4 |   2  4 | 0   4 |   * nn |   2
-------------------------+-----+--------+-------+--------+----
xo-n/d-oo ox     ..&#x &  n+2 | n+1 2n | 1  3n |   2  n |  2n

© 2004-2021
top of page