Acronym oddimo (alt.: bittip)
Name octadeca-diminished mo,
bitriangular trioprism,
triangular trioalterprism
Circumradius 1
Lace city
in approx. ASCII-art
  A   V  
         
V       A		A = o3x o3x   (triddip)
         		V = x3o x3o   (bidual triddip)
  A   V  
Face vector 54, 378, 864, 864, 396, 72
Confer
uniform relative:
mo  
general polytopal classes:
scaliform  
External
links
polytopewiki  

In a similar way, as gap was derived from ex, this polypeton too can be derived from mo: When gap rejects 2 perpendicular cycles of 10 consecutive vertices each, then this one rejects 3 mutually perpendicular ones of 6 consecutive vertices each. Thereby the triddaf cells occur as the remaining central parts of the hin cells of mo, while the tridafup cells represent the remainders of the diminishing facets, which occur in turn as central parts of dot, i.e. the verfs of mo. Within the lace city pic 6 of the tridafups can be spotted as the hexagon sides A-V.

It well can be obtained too as the hull of the compound of 2 tridually arranged trittips, one of them outlined in the lace city pic by the A's, the other one by the V's.


Incidence matrix according to Dynkin symbol

xo3ox xo3ox xo3ox&#zx   → height = 0
(tegum sum of 2 tri-dual trittips)

o.3o. o.3o. o.3o.    & | 54 |   6   8 |  3  12  36 |  12  12  30  24 |  3  36  18 |  6 12
-----------------------+----+---------+------------+-----------------+------------+------
x. .. .. .. .. ..    & |  2 | 162   * |  1   4   4 |   6   4   8   4 |  2  16   5 |  4  6
oo3oo oo3oo oo3oo&#x   |  2 |   * 216 |  0   0   6 |   0   3   6   6 |  0  12   6 |  3  6
-----------------------+----+---------+------------+-----------------+------------+------
x.3o. .. .. .. ..    & |  3 |   3   0 | 54   *   * |   4   4   0   0 |  2  12   0 |  4  4
x. .. x. .. .. ..    & |  4 |   4   0 |  * 162   * |   2   0   2   0 |  1   4   1 |  2  2
xo .. .. .. .. ..&#x & |  3 |   1   2 |  *   * 648 |   0   1   2   2 |  0   6   3 |  2  4
-----------------------+----+---------+------------+-----------------+------------+------
x.3o. x. .. .. ..    &   6 |   9   0 |  2   3   0 | 108   *   *   * |  1   2   0 |  2  1
xo3ox .. .. .. ..&#x &   6 |   6   6 |  2   0   6 |   * 108   *   * |  0   4   0 |  2  2
xo .. xo .. .. ..&#x &   5 |   4   4 |  0   1   4 |   *   * 324   * |  0   2   1 |  1  2
xo .. .. ox .. ..&#x &   4 |   2   4 |  0   0   4 |   *   *   * 324 |  0   2   2 |  1  3
-----------------------+----+---------+------------+-----------------+------------+------
x.3o. x.3o. .. ..    &   9 |  18   0 |  6   9   0 |   6   0   0   0 | 18   *   * |  2  0
xo3ox xo .. .. ..&#x &   9 |  12  12 |  3   3  18 |   1   2   3   3 |  * 216   * |  1  1
xo .. xo .. .. ox&#x &   6 |   5   8 |  0   1  12 |   0   0   2   4 |  *   * 162 |  0  2
-----------------------+----+---------+------------+-----------------+------------+------
xo3ox xo3ox .. ..&#x &  18 |  36  36 | 12  18  72 |  12  12  18  18 |  2  12   0 | 18  *
xo3ox xo .. .. ox&#x &  12 |  18  24 |  4   6  48 |   2   4  12  18 |  0   4   6 |  * 54

© 2004-2025
top of page