Site Map Polytopes Dynkin Diagrams Vertex Figures, etc. Incidence Matrices Index

---- 3D ----

This page is available sorted by point-group symmetry (below) or by complexity or by similarity.



This dimension is accessible for pictures. Thus most of the following uniform polyhedra pages provide such. Further all pictures bear links to VRML models.

For most of those, which are derivable as any kind of snubs, pictures (and VRMLs) on their derivation are provided in addition. There the color coding is: red are the elements to be alternated, yellow are the faceting faces underneath (sefa( . )), the starting figure is given as wire frame. Those figures in general do not show uniform representants, it is the starting figure which is chosen to be uniform.

Especially the Grünbaumians can be best understood, if the (abstract) incidence matrices of those degenerate polyhedra with (geometrical) complete coincidence of some elements are not investigated individually, but independently of the special symmetry, i.e. by considering simultanuously the general Schwarz triangle o-p-o-q-o-r-*a and deriving therefrom the individual cases. (For the notation of virtual nodes like *a see here.)

Just as for the Grünbaumians, especially the holosnubs with ...β3... elements are better understood from the consideration of ...βn... with general odd n. Note moreover, that only for the holosnubs (due to their construction advice) in the followings those sections titled "convex" this attribute rather should be reduced to locally convex instead.

*) Some of the partial snubs which contain both s and x nodes, respectively partial holosnubs which contain both β and x nodes, do not have a uniform representation. Those are only possible with different edge lengths, e.g. as mere alternated faceting from their uniform starting figure. This latter representation surely is always possible.



Tetrahedral Symmetries   (up)

©
  o3o3o (convex) o3/2o3o3*a (µ=2) o3/2o3o (µ=3)
quasiregulars
x3o3o - tet
o3x3o - oct
x3/2o3o3*a - 2tet
o3/2o3x3*a - 2tet
x3/2o3o - tet
o3/2x3o - oct
o3/2o3x - tet
other
Wythoffians
x3x3o - tut
x3o3x - co
x3x3x - toe

a3b3c - (general variant)
x3/2x3o3*a - 2oct
x3/2o3x3*a - oho
x3/2x3x3*a - 2tut
x3/2x3o - 3tet
x3/2o3x - 2thah
o3/2x3x - tut
x3/2x3x - cho+4{6/2}
(partial)
snubs and
holosnubs
β3o3o - 2tet
o3β3o - oct+6{4}
β3x3o2oct
x3β3o *)
β3β3o - 2oct+8{3}
β3o3x - oho
β3o3β *)
β3x3x - 2tut
x3β3x - 2co
β3β3x - 2co
β3x3β *)
s3s3sike
β3/2o3o3*a - 4tet
o3/2o3β3*a - 4tet
β3/2x3o3*a - 2oct
β3/2β3o3*a - 2oct+12{4}
β3/2o3x3*a - oho+8{3}
x3/2o3β3*a - 6tet
β3/2o3β3*a - 2oct+12{4}
β3/2x3x3*a - oho+8{3}
x3/2x3β3*a - 4oct
β3/2β3x3*a *)
β3/2x3β3*a - 4oct
s3/2s3s3*a - 2oct+8{3}
β3/2o3o - 2tet
o3/2β3o - oct+6{4}
o3/2o3β - 2tet
β3/2x3o - 2tet
x3/2β3o - 2tet
β3/2β3o - 6tet
β3/2o3x - 2oct
x3/2o3β - 2oct
β3/2o3β *)
o3/2β3x *)
o3/2x3β2oct
o3/2β3β - 2oct+8{3}
β3/2x3x - oho
x3/2β3x *)
x3/2x3β - 6tet
β3/2β3x - 4thah
β3/2x3β - 6tet
...
  o3/2o3/2o (µ=5) o3/2o3/2o3/2*a (µ=6)  
quasiregulars
x3/2o3/2o - tet
o3/2x3/2o - oct
x3/2o3/2o3/2*a - 2tet
 
other
Wythoffians
x3/2x3/2o - 3tet
x3/2o3/2x - co
x3/2x3/2x - 2oct+6{4}
x3/2x3/2o3/2*a - 2oct
x3/2x3/2x3/2*a - 6tet
 
(partial)
snubs and
holosnubs
β3/2o3/2o - 2tet
o3/2β3/2o - oct+6{4}
s3/2s3/2s - gike
...
β3/2o3/2o3/2*a - 4tet
β3/2x3/2o3/2*a - 2oct
β3/2β3/2o3/2*a - 2oct+12{4}
...
 


Octahedral Symmetries   (up)

©
  o3o4o (convex) o3/2o4o4*a (µ=2) o4/3o3o4*a (µ=4)
quasiregulars
x3o4o - oct
o3x4o - co
o3o4x - cube
x3/2o4o4*a - oct+6{4}
o3/2o4x4*a - 2cube
x4/3o3o4*a - 2cube
o4/3x3o4*a - oct+6{4}
o4/3o3x4*a - oct+6{4}
other
Wythoffians
x3x4o - toe
x3o4x - sirco
o3x4x - tic
x3x4x - girco

a3b4c - (general variant)
x3/2x4o4*a - 2co
x3/2o4x4*a - socco
x3/2x4x4*a - 2tic
x4/3x3o4*a - gocco
x4/3o3x4*a - socco
o4/3x3x4*a - 2cho
x4/3x3x4*a - cotco
(partial)
snubs and
holosnubs
β3o4o - oct+6{4}
o3β4o *)
o3o4s - tet
β3x4o - 2co
x3β4o *)
s3s4oike
β3o4x - socco
x3o4stut
β3o4β *)
o3β4x *)
o3x4s - co
o3β4β - 2co+16{3}
β3x4x - 2tic
x3β4x - 2sirco
x3x4s - toe
s3s4x - sirco
β3x4β *)
x3β4β - 2sirco
s3s4s - snic
β3β4β - disco
...
...
  o3/2o4o (µ=5) o4/3o3o (µ=7) o4/3o3/2o (µ=11)
quasiregulars
x3/2o4o - oct
o3/2x4o - co
o3/2o4x - cube
x4/3o3o - cube
o4/3x3o - co
o4/3o3x - oct
x4/3o3/2o - cube
o4/3x3/2o - co
o4/3o3/2x - oct
other
Wythoffians
x3/2x4o - 2oct+6{4}
x3/2o4x - querco
o3/2x4x - tic
x3/2x4x - sroh+8{6/2}
x4/3x3o - quith
x4/3o3x - querco
o4/3x3x - toe
x4/3x3x - quitco
x4/3x3/2o - quith
x4/3o3/2x - sirco
o4/3x3/2x - 2oct+6{4}
x4/3x3/2x - groh+8{6/2}
(partial)
snubs and
holosnubs
β3/2o4o - oct+6{4}
s3/2s4o - gike
...
o4/3o3β - oct+6{4}
o4/3s3sike
...
o4/3o3/2β - oct+6{4}
o4/3s3/2s - gike
...
  o4/3o4/3o3/2*a (µ=14)    
quasiregulars
x4/3o4/3o3/2*a - oct+6{4}
o4/3x4/3o3/2*a - 2cube
   
other
Wythoffians
x4/3x4/3o3/2*a - gocco
x4/3o4/3x3/2*a - 2co
x4/3x4/3x3/2*a - 2quith
   
(partial)
snubs and
holosnubs
...
   


Icosahedral Symmetries   (up)

©
  o3o5o (convex) o5/2o3o3*a (µ=2) o3/2o5o5*a (µ=2)
quasiregulars
x3o5o - ike
o3x5o - id
o3o5x - doe
x5/2o3o3*a - sidtid
o5/2o3x3*a - 2ike
x3/2o5o5*a - cid
o3/2o5x5*a - 2doe
other
Wythoffians
x3x5o - ti
x3o5x - srid
o3x5x - tid
x3x5x - grid

a3b5c - (general variant)
x5/2x3o3*a - 2id
x5/2o3x3*a - siid
x5/2x3x3*a - 2ti
x3/2x5o5*a - 2id
x3/2o5x5*a - saddid
x3/2x5x5*a - 2tid
(partial)
snubs and
holosnubs
β3o5o - cid
o3β5o *)
o3o5β - sidtid
x3β5o *)
β3x5o - 2id
β3β5o - seside
x3o5β - siid
β3o5x - saddid
β3o5β *)
o3x5β - 2id
o3β5x *)
o3β5β - 2id+40{3}
x3x5β - 2ti
x3β5x - 2srid
x3β5β - 2srid
β3x5x - 2tid
β3x5β *)
β3β5x - 2srid
s3s5s - snid
β3β5β - dissid
...
s5/2s3s3*a - seside
...
s3/2s5s5*a - 2id+40{3}
  o5/2o5o (µ=3) o5/3o3o5*a (µ=4) o5/2o5/2o5/2*a (µ=6)
quasiregulars
x5/2o5o - sissid
o5/2x5o - did
o5/2o5x - gad
x5/3o3o5*a - ditdid
o5/3x3o5*a - gacid
o5/3o3x5*a - cid
x5/2o5/2o5/2*a - 2sissid
other
Wythoffians
x5/2x5o - 3doe
x5/2o5x - raded
o5/2x5x - tigid
x5/2x5x - sird+12{10/2}
x5/3x3o5*a - gidditdid
x5/3o3x5*a - sidditdid
o5/3x3x5*a - ided
x5/3x3x5*a - idtid
x5/2x5/2o5/2*a - 2did
x5/2x5/2x5/2*a - 6doe
(partial)
snubs and
holosnubs
β5/2o5o - 2gad
o5/2β5o *)
o5/2o5β - 2sissid
x5/2β5o *)
β5/2x5o - 2did
β5/2β5o - 3sidtid
x5/2o5β - 2did
β5/2o5x - 2sidhid
β5/2o5β *)
o5/2x5β - 2did
o5/2β5x *)
o5/2β5β - 3gidtid
x5/2x5β - 6doe
x5/2β5x -
x5/2β5β -
β5/2x5x - 2tigid
β5/2x5β *)
β5/2β5x -
s5/2s5s - siddid
...
s5/3s3s5*a - sided
...
s5/2s5/2s5/2*a - 3sidtid
  o3/2o3o5*a (µ=6) o5/4o5o5*a (µ=6) o5/2o3o (µ=7)
quasiregulars
x3/2o3o5*a - gidtid
o3/2x3o5*a - 2gike
o3/2o3x5*a - gidtid
x5/4o5o5*a - 2gad
o5/4o5x5*a - 2gad
x5/2o3o - gissid
o5/2x3o - gid
o5/2o3x - gike
other
Wythoffians
x3/2x3o5*a - 3ike+gad
x3/2o3x5*a - 2seihid
o3/2x3x5*a - giid
x3/2x3x5*a - siddy+20{6/2}
x5/4x5o5*a - 2did
x5/4o5x5*a - 2sidhid
x5/4x5x5*a - 2tigid
x5/2x3o - 2gad+ike
x5/2o3x - sicdatrid
o5/2x3x - tiggy
x5/2x3x - ri+12{10/2}
(partial)
snubs and
holosnubs
...
s3/2s3s5*a - 5ike+gad
...
s5/4s5s5*a - 3ike+3gad
β5/2o3o - gidtid
o5/2β3o - 
o5/2o3β - gacid
...
s5/2s3s - gosid
  o3/2o5/2o5*a (µ=8) o5/3o5o (µ=9) o5/4o3o5*a (µ=10)
quasiregulars
x3/2o5/2o5*a - cid
o3/2x5/2o5*a - gacid
o3/2o5/2x5*a - ditdid
x5/3o5o - sissid
o5/3x5o - did
o5/3o5x - gad
x5/4o3o5*a - 2doe
o5/4x3o5*a - cid
o5/4o3x5*a - cid
other
Wythoffians
x3/2x5/2o5*a - sidtid+gidtid
x3/2o5/2x5*a - sidditdid
o3/2x5/2x5*a - ike+3gad
x3/2x5/2x5*a - id+seihid+sidhid
x5/3x5o - quit sissid
x5/3o5x - cadditradid
o5/3x5x - tigid
x5/3x5x - quitdid
x5/4x3o5*a - sidtid+ditdid
x5/4o3x5*a - saddid
o5/4x3x5*a - 2gidhei
x5/4x3x5*a - siddy+12{10/4}
(partial)
snubs and
holosnubs
...
...
s5/3s5s - isdid
...
  o5/3o5/2o3*a (µ=10) o3/2o5o (µ=11) o5/3o3o (µ=13)
quasiregulars
x5/3o5/2o3*a - gacid
o5/3x5/2o3*a - 2gissid
o5/3o5/2x3*a - gacid
x3/2o5o - ike
o3/2x5o - id
o3/2o5x - doe
x5/3o3o - gissid
o5/3x3o - gid
o5/3o3x - gike
other
Wythoffians
x5/3x5/2o3*a - gaddid
x5/3o5/2x3*a - 2sidhei
o5/3x5/2x3*a - ditdid+gidtid
x5/3x5/2x3*a - giddy+12{10/2}
x3/2x5o - 2ike+gad
x3/2o5x - gicdatrid
o3/2x5x - tid
x3/2x5x - sird+20{6/2}
x5/3x3o - quit gissid
x5/3o3x - qrid
o5/3x3x - tiggy
x5/3x3x - gaquatid
(partial)
snubs and
holosnubs
...
s5/3s5/2s3*a - gisdid
...
β3/2β5o - sirsid
s3/2s5s - 4ike+gad
...
s5/3s3s - gisid
  o5/4o3o3*a (µ=14) o3/2o5/2o5/2*a (µ=14) o5/4o5/2o3*a (µ=16)
quasiregulars
x5/4o3o3*a - gidtid
o5/4o3x3*a - 2gike
x3/2o5/2o5/2*a - gacid
o3/2o5/2x5/2*a - 2gissid
x5/4o5/2o3*a - cid
o5/4x5/2o3*a - ditdid
o5/4o5/2x3*a - gacid
other
Wythoffians
x5/4x3o3*a - 2gid
x5/4o3x3*a - giid
x5/4x3x3*a - 2tiggy
x3/2x5/2o5/2*a - 2gid
x3/2o5/2x5/2*a - ditdid+gidtid
x3/2x5/2x5/2*a - 2ike+4gad
x5/4x5/2o3*a - 3sissid+gike
x5/4o5/2x3*a - ided
o5/4x5/2x3*a - ike+3gad
x5/4x5/2x3*a - did+sidhei+gidhei
(partial)
snubs and
holosnubs
...
...
...
  o3/2o5/2o (µ=17) o3/2o5/3o3*a (µ=18) o5/3o5/3o5/2*a (µ=18)
quasiregulars
x3/2o5/2o - gike
o3/2x5/2o - gid
o3/2o5/2x - gissid
x3/2o5/3o3*a - 2ike
o3/2x5/3o3*a - sidtid
o3/2o5/3x3*a - sidtid
x5/3o5/3o5/2*a - 2sissid
o5/3x5/3o5/2*a - 2sissid
other
Wythoffians
x3/2x5/2o - 2gike+sissid
x3/2o5/2x - qrid
o3/2x5/2x - 2gad+ike
x3/2x5/2x - 2gidtid+5cube
x3/2x5/3o3*a - sissid+3gike
x3/2o5/3x3*a - siid
o3/2x5/3x3*a - 2geihid
x3/2x5/3x3*a - giddy+20{6/2}
x5/3x5/3o5/2*a - 2gidhid
x5/3o5/3x5/2*a - 2did
x5/3x5/3x5/2*a - 2quitsissid
(partial)
snubs and
holosnubs
...
...
...
  o5/4o3o (µ=19) o5/4o5/2o (µ=21) o3/2o3/2o5/2*a (µ=22)
quasiregulars
x5/4o3o - doe
o5/4x3o - id
o5/4o3x - ike
x5/4o5/2o - gad
o5/4x5/2o - did
o5/4o5/2x - sissid
x3/2o3/2o5/2*a - sidtid
o3/2x3/2o5/2*a - 2ike
other
Wythoffians
x5/4x3o - 2sissid+gike
x5/4o3x - gicdatrid
o5/4x3x - ti
x5/4x3x - ri+12{10/4}
x5/4x5/2o - 3gissid
x5/4o5/2x - cadditradid
o5/4x5/2x - 3doe
x5/4x5/2x - 2ditdid+5cube
x3/2x3/2o5/2*a - sissid+3gike
x3/2o3/2x5/2*a - 2id
x3/2x3/2x5/2*a - 4ike+2gad
(partial)
snubs and
holosnubs
...
...
...
s3/2s3/2s5/2*a - sirsid
  o3/2o5/3o (µ=23) o3/2o5/3o5/3*a (µ=26) o5/4o5/3o (µ=27)
quasiregulars
x3/2o5/3o - gike
o3/2x5/3o - gid
o3/2o5/3x - gissid
x3/2o5/3o5/3*a - gacid
o3/2o5/3x5/3*a - 2gissid
x5/4o5/3o - gad
o5/4x5/3o - did
o5/4o5/3x - sissid
other
Wythoffians
x3/2x5/3o - 2gike+sissid
x3/2o5/3x - sicdatrid
o3/2x5/3x - quit gissid
x3/2x5/3x - gird+20{6/2}
x3/2x5/3o5/3*a - 2gid
x3/2o5/3x5/3*a - gaddid
x3/2x5/3x5/3*a - 2quitgissid
x5/4x5/3o - 3gissid
x5/4o5/3x - raded
o5/4x5/3x - quit sissid
x5/4x5/3x - gird+12{10/4}
(partial)
snubs and
holosnubs
...
s3/2s5/3s - girsid
...
...
  o5/4o3/2o (µ=29) o5/4o3/2o5/3*a (µ=32) o5/4o3/2o3/2*a (µ=34)
quasiregulars
x5/4o3/2o - doe
o5/4x3/2o - id
o5/4o3/2x - ike
x5/4o3/2o5/3*a - ditdid
o5/4x3/2o5/3*a - cid
o5/4o3/2x5/3*a - gacid
x5/4o3/2o3/2*a - gidtid
o5/4o3/2x3/2*a - 2gike
other
Wythoffians
x5/4x3/2o - 2sissid+gike
x5/4o3/2x - srid
o5/4x3/2x - 2ike+gad
x5/4x3/2x - 2sidtid+5cube
x5/4x3/2o5/3*a - 3sissid+gike
x5/4o3/2x5/3*a - gidditdid
o5/4x3/2x5/3*a - sidtid+gidtid
x5/4x3/2x5/3*a - gid+geihid+gidhid
x5/4x3/2o3/2*a - 2gid
x5/4o3/2x3/2*a - 3ike+gad
x5/4x3/2x3/2*a - 2sissid+4gike
(partial)
snubs and
holosnubs
...
...
...
  o5/4o5/4o3/2*a (µ=38) o5/4o5/4o5/4*a (µ=42)  
quasiregulars
x5/4o5/4o3/2*a - cid
o5/4x5/4o3/2*a - 2doe
x5/4o5/4o5/4*a - 2gad
 
other
Wythoffians
x5/4x5/4o3/2*a - sidtid+ditdid
x5/4o5/4x3/2*a - 2id
x5/4x5/4x3/2*a - 4sissid+2gike
x5/4x5/4o5/4*a - 2did
x5/4x5/4x5/4*a - 6gissid
 
(partial)
snubs and
holosnubs
...
s5/4s5/4s3/2*a - 4ike+2gad
...
s5/4s5/4s5/4*a - 3ike+3gad
 


Prismatic Symmetries   (up)

  o ono (convex) o on/do (µ=d) o o o (convex)
products of
quasiregulars
x x3o  - trip
x x4o  - cube
x x5o  - pip
x x6o  - hip
x x8o  - op
x x10o - dip
x x12o - twip

x xno  - n-p
x x5/2o  - stip
x x8/3o  - stop
x x10/3o - stiddip

x xn/do  - n/d-p
x xn/2o  - n/2-p
x x x - cube
other
Wythoffians
x x3x - hip
x x4x - op
x x5x - dip
x x6x - twip

x xnx - 2n-p
x x4/3x - stop
x x5/3x - stiddip

x xn/dx - 2n/d-p
x xn/2x - (2n)/2-p
 
(partial)
snubs and
holosnubs
x2β5ostip
β2β5ostap
x2s6otrip
x2s8o  - cube
x2s10o - pip
x2s12o - hip
x2s3strip
x2s4s  - cube
x2s5s  - pip
x2s6s  - hip
s2s3soct
s2s4s  - squap
s2s5s  - pap

s2xno  - {n}
s2onx  - {n}
s2xnx  - {2n}
x2βnx  - 2n/2-p
β2βno  - n/2-ap
β2βnx  - 2n/2-p
x2sns  - n-p
s2sns  - n-ap

x2s2no - n-p
x2s2nx - 2n-p
s2s2no - n-ap
s2s2nx - 2n-p
s2s5/2sstap

s2sn/ds  - n/d-ap
s2s2n/do - n/d-ap
s2s2n/dx - 2n/d-p
s2s2s - tet


other non-kaleidoscopical uniform polyhedra   (up)

hemi reduced others
hemi( x3/2o3x )        - thah
hemi( o4/3x3x4*a )     - cho
hemi( x3/2o3x5*a )     - seihid
hemi( x5/4o5x5*a )     - sidhid
hemi( o5/4x3x5*a )     - gidhei
hemi( x5/3o5/2x3*a )   - sidhei
hemi( o3/2x5/3x3*a )   - geihid
hemi( x5/3x5/3o5/2*a ) - gidhid
reduced( x3/2x3x        , by 4{6/2} )   - cho
reduced( x3/2x4x        , by 8{6/2} )   - sroh
reduced( x4/3x3/2x      , by 8{6/2} )   - groh
reduced( x5/2x5x        , by 12{10/2} ) - sird
reduced( x3/2x3x5*a     , by 20{6/2} )  - siddy
reduced( x5/2x3x        , by 12{10/2} ) - ri
reduced( x3/2x5/2x5*a   , by id )     - seihid & sidhid
reduced( x5/4x3x5*a     , by 12{10/4} ) - siddy
reduced( x5/3x5/2x3*a   , by 12{10/2} ) - giddy
reduced( x3/2x5x        , by 20{6/2} )  - sird
reduced( x5/4x5/2x3*a   , by did )    - gidhei & sidhei
reduced( x3/2x5/3x3*a   , by 20{6/2} )  - giddy
reduced( x5/4x3x        , by 12{10/4} ) - ri
reduced( x3/2x5/3x      , by 20{6/2} )  - gird
reduced( x5/4x5/3x      , by 12{10/4} ) - gird
reduced( x5/4x3/2x5/3*a , by gid )    - geihid & gidhid
reduced( xx3/2ox&#x     , by {6/2} )    - thah
gidrid
gidisdrid


© 2004-2025
top of page