Acronym | hihexat |
Name | hyperbolic order 6 hexagonal tiling |
© | |
Circumradius | 1/sqrt(-8) = 0.353553 i |
Vertex figure | [66] |
Dual | (selfdual) |
Confer |
|
External links |
There exists a regular modwrap of this tiling, obtained by identifying every 3rd vertex on each hole. Then it allows a representation as infinite regular skew polyhedron, which happens to be a facial subset of the bitruncated tetrahedral-octahedral honeycomb.
Incidence matrix according to Dynkin symbol
x6o6o (N → ∞) . . . | N | 6 | 6 ------+---+----+-- x . . | 2 | 3N | 2 ------+---+----+-- x6o . | 6 | 6 | N
s4o6o (N → ∞) demi( . . . ) | N | 6 | 6 --------------+---+----+-- s4o . | 2 | 3N | 2 --------------+---+----+-- sefa( s4o6o ) | 6 | 6 | N starting figure: x4o6o
o3o4s4*a (N → ∞) demi( . . . ) | 2N | 3 3 | 6 -----------------+----+-------+--- o s4*a | 2 | 3N * | 2 . o4s | 2 | * 3N | 2 -----------------+----+-------+--- sefa( o3o4s4*a ) | 6 | 3 3 | 2N starting figure: o3o4x4*a
x3xØo3oØ*a . . . . | 2N | 3 3 | 6 -----------+----+-------+--- x . . . | 2 | 3N * | 2 . x . . | 2 | * 3N | 2 -----------+----+-------+--- x3x . . | 6 | 3 3 | 2N
© 2004-2025 | top of page |