Acronym | ..., 3Q3-S3-2P6-2P3-ortho |
Name | parallelly that dissected, elongated gyrich |
© | |
Confer |
|
External links |
This scaliform honeycomb is the elongated form of 6Q3-2S3-ortho.
Polar pairs of tricu and an equatorial hip could be joined each into an etobcu. Then this honeycomb would become gyerich.
(N → ∞) 6N | 2 2 1 2 | 1 1 2 2 2 3 2 | 3 1 1 1 2 ---+-------------+----------------------+----------- 2 | 6N * * * | 1 0 1 1 0 0 1 | 2 0 1 0 1 plane, tricu-inc.*) 2 | * 6N * * | 0 1 1 0 1 1 0 | 1 1 0 1 1 plane, oct-inc. 2 | * * 3N * | 0 0 0 2 2 0 0 | 0 0 1 1 2 parallels 2 | * * * 6N | 0 0 0 0 0 2 1 | 2 1 0 0 0 obliques ---+-------------+----------------------+----------- 3 | 3 0 0 0 | 2N * * * * * * | 1 0 1 0 0 plane, tricu-trip 3 | 0 3 0 0 | * 2N * * * * * | 0 1 0 1 0 plane, oct-trip 6 | 3 3 0 0 | * * 2N * * * * | 1 0 0 0 1 planar hexagons 4 | 2 0 2 0 | * * * 3N * * * | 0 0 1 0 1 para. sq., tricu-inc.*) 4 | 0 2 2 0 | * * * * 3N * * | 0 0 0 1 1 para. sq., oct-inc. 3 | 0 1 0 2 | * * * * * 6N * | 1 1 0 0 0 obl. triangles 4 | 2 0 0 2 | * * * * * * 3N | 2 0 0 0 0 obl. squares ---+-------------+----------------------+----------- 9 | 6 3 0 6 | 1 0 1 0 0 3 3 | 2N * * * * tricu 6 | 0 6 0 6 | 0 2 0 0 0 6 0 | * N * * * oct 6 | 6 0 3 0 | 2 0 0 3 0 0 0 | * * N * * trip, tricu-inc.*) 6 | 0 6 3 0 | 0 2 0 0 3 0 0 | * * * N * trip, oct-inc. 12 | 6 6 6 0 | 0 0 2 3 3 0 0 | * * * * N hip *) top base is referred to only
© 2004-2024 | top of page |