Acronym ..., 3Q3-S3-2P6-2P3-ortho
Name parallelly that dissected, elongated gyrich
 
 ©
Confer
related CRF honeycombs:
gyerich   6Q3-2S3-ortho   3Q3-S3-2P6-2P3-gyro  
general polytopal classes:
scaliform  
External
links
mcneill

This scaliform honeycomb is the elongated form of 6Q3-2S3-ortho.

Polar pairs of tricu and an equatorial hip could be joined each into an etobcu. Then this honeycomb would become gyerich.


Incidence matrix

(N → ∞)

6N |  2  2  1  2 |  1  1  2  2  2  3  2 |  3 1 1 1 2
---+-------------+----------------------+-----------
 2 | 6N  *  *  * |  1  0  1  1  0  0  1 |  2 0 1 0 1  plane, tricu-inc.*)
 2 |  * 6N  *  * |  0  1  1  0  1  1  0 |  1 1 0 1 1  plane, oct-inc.
 2 |  *  * 3N  * |  0  0  0  2  2  0  0 |  0 0 1 1 2  parallels
 2 |  *  *  * 6N |  0  0  0  0  0  2  1 |  2 1 0 0 0  obliques
---+-------------+----------------------+-----------
 3 |  3  0  0  0 | 2N  *  *  *  *  *  * |  1 0 1 0 0  plane, tricu-trip
 3 |  0  3  0  0 |  * 2N  *  *  *  *  * |  0 1 0 1 0  plane, oct-trip
 6 |  3  3  0  0 |  *  * 2N  *  *  *  * |  1 0 0 0 1  planar hexagons
 4 |  2  0  2  0 |  *  *  * 3N  *  *  * |  0 0 1 0 1  para. sq., tricu-inc.*)
 4 |  0  2  2  0 |  *  *  *  * 3N  *  * |  0 0 0 1 1  para. sq., oct-inc.
 3 |  0  1  0  2 |  *  *  *  *  * 6N  * |  1 1 0 0 0  obl. triangles
 4 |  2  0  0  2 |  *  *  *  *  *  * 3N |  2 0 0 0 0  obl. squares
---+-------------+----------------------+-----------
 9 |  6  3  0  6 |  1  0  1  0  0  3  3 | 2N * * * *  tricu
 6 |  0  6  0  6 |  0  2  0  0  0  6  0 |  * N * * *  oct
 6 |  6  0  3  0 |  2  0  0  3  0  0  0 |  * * N * *  trip, tricu-inc.*)
 6 |  0  6  3  0 |  0  2  0  0  3  0  0 |  * * * N *  trip, oct-inc.
12 |  6  6  6  0 |  0  0  2  3  3  0  0 |  * * * * N  hip

*) top base is referred to only

© 2004-2024
top of page