Acronym | sirhin | ||||||||||||||||||
Name |
small rhombihemipenteract, cantellated demipenteract, runcic penteract | ||||||||||||||||||
Circumradius | sqrt(21/8) = 1.620185 | ||||||||||||||||||
Lace city in approx. ASCII-art |
| ||||||||||||||||||
o3o3x o3x3x x3x3o x3o3o -- x3o3o *b3x (rit) o3x3o o3u3o x3x3x o3u3o o3x3x -- x3x3o *b3o (gyro thex) x3x3o u3o3x x3o3u o3x3x -- o3x3x *b3o (thex) x3o3x uo3oo3ou- x3o3x -- o3o3x *b3x (gyro rit) &#zx \ \ \ \ \ \ \ \ \ +-- o3x3o3o (rap) \ \ \ +--------- o3x3x3o (deca) \ \ +---------------- x3o3x3x (prip) \ +----------------------- uo3oo3ou3xo&#zx +------------------------------ x3o3x3o (srip) | |||||||||||||||||||
Coordinates | (3, 3, 1, 1, 1)/sqrt(8) & all permutations, all even changes of sign | ||||||||||||||||||
General of army | (is itself convex) | ||||||||||||||||||
Colonel of regiment |
(is itself locally convex
– uniform polyteral members:
| ||||||||||||||||||
Dihedral angles
(at margins) | |||||||||||||||||||
Face vector | 160, 720, 880, 360, 42 | ||||||||||||||||||
Confer |
| ||||||||||||||||||
External links |
As abstract polytope sirhin is isomorphic to its (Grünbaumian) isomorph, thereby replacing some prograde by retrograde triangles, co by 2thah, resp. rit by 2tho+24{4} and srip by pinnip+5 2thah.
Incidence matrix according to Dynkin symbol
x3o3o *b3x3o . . . . . | 160 | 3 6 | 3 6 6 3 | 1 6 3 2 3 | 2 3 1 -------------+-----+---------+-----------------+----------------+--------- x . . . . | 2 | 240 * | 2 2 0 0 | 1 4 1 0 0 | 2 2 0 . . . x . | 2 | * 480 | 0 1 2 1 | 0 2 1 1 2 | 1 2 1 -------------+-----+---------+-----------------+----------------+--------- x3o . . . | 3 | 3 0 | 160 * * * | 1 2 0 0 0 | 2 1 0 x . . x . | 4 | 2 2 | * 240 * * | 0 2 1 0 0 | 1 2 0 . o . *b3x . | 3 | 0 3 | * * 320 * | 0 1 0 1 1 | 1 1 1 . . . x3o | 3 | 0 3 | * * * 160 | 0 0 1 0 2 | 0 2 1 -------------+-----+---------+-----------------+----------------+--------- x3o3o . . ♦ 4 | 6 0 | 4 0 0 0 | 40 * * * * | 2 0 0 x3o . *b3x . ♦ 12 | 12 12 | 4 6 4 0 | * 80 * * * | 1 1 0 x . . x3o ♦ 6 | 3 6 | 0 3 0 2 | * * 80 * * | 0 2 0 . o3o *b3x . ♦ 4 | 0 6 | 0 0 4 0 | * * * 80 * | 1 0 1 . o . *b3x3o ♦ 6 | 0 12 | 0 0 4 4 | * * * * 80 | 0 1 1 -------------+-----+---------+-----------------+----------------+--------- x3o3o *b3x . ♦ 32 | 48 48 | 32 24 32 0 | 8 8 0 8 0 | 10 * * x3o . *b3x3o ♦ 30 | 30 60 | 10 30 20 20 | 0 5 10 0 5 | * 16 * . o3o *b3x3o ♦ 10 | 0 30 | 0 0 20 10 | 0 0 0 5 5 | * * 16
x3o3/2o *b3x3o . . . . . | 160 | 3 6 | 3 6 6 3 | 1 6 3 2 3 | 2 3 1 ---------------+-----+---------+-----------------+----------------+--------- x . . . . | 2 | 240 * | 2 2 0 0 | 1 4 1 0 0 | 2 2 0 . . . x . | 2 | * 480 | 0 1 2 1 | 0 2 1 1 2 | 1 2 1 ---------------+-----+---------+-----------------+----------------+--------- x3o . . . | 3 | 3 0 | 160 * * * | 1 2 0 0 0 | 2 1 0 x . . x . | 4 | 2 2 | * 240 * * | 0 2 1 0 0 | 1 2 0 . o . *b3x . | 3 | 0 3 | * * 320 * | 0 1 0 1 1 | 1 1 1 . . . x3o | 3 | 0 3 | * * * 160 | 0 0 1 0 2 | 0 2 1 ---------------+-----+---------+-----------------+----------------+--------- x3o3/2o . . ♦ 4 | 6 0 | 4 0 0 0 | 40 * * * * | 2 0 0 x3o . *b3x . ♦ 12 | 12 12 | 4 6 4 0 | * 80 * * * | 1 1 0 x . . x3o ♦ 6 | 3 6 | 0 3 0 2 | * * 80 * * | 0 2 0 . o3/2o *b3x . ♦ 4 | 0 6 | 0 0 4 0 | * * * 80 * | 1 0 1 . o . *b3x3o ♦ 6 | 0 12 | 0 0 4 4 | * * * * 80 | 0 1 1 ---------------+-----+---------+-----------------+----------------+--------- x3o3/2o *b3x . ♦ 32 | 48 48 | 32 24 32 0 | 8 8 0 8 0 | 10 * * x3o . *b3x3o ♦ 30 | 30 60 | 10 30 20 20 | 0 5 10 0 5 | * 16 * . o3/2o *b3x3o ♦ 10 | 0 30 | 0 0 20 10 | 0 0 0 5 5 | * * 16
x3o3o *b3x3/2o . . . . . | 160 | 3 6 | 3 6 6 3 | 1 6 3 2 3 | 2 3 1 ---------------+-----+---------+-----------------+----------------+--------- x . . . . | 2 | 240 * | 2 2 0 0 | 1 4 1 0 0 | 2 2 0 . . . x . | 2 | * 480 | 0 1 2 1 | 0 2 1 1 2 | 1 2 1 ---------------+-----+---------+-----------------+----------------+--------- x3o . . . | 3 | 3 0 | 160 * * * | 1 2 0 0 0 | 2 1 0 x . . x . | 4 | 2 2 | * 240 * * | 0 2 1 0 0 | 1 2 0 . o . *b3x . | 3 | 0 3 | * * 320 * | 0 1 0 1 1 | 1 1 1 . . . x3/2o | 3 | 0 3 | * * * 160 | 0 0 1 0 2 | 0 2 1 ---------------+-----+---------+-----------------+----------------+--------- x3o3o . . ♦ 4 | 6 0 | 4 0 0 0 | 40 * * * * | 2 0 0 x3o . *b3x . ♦ 12 | 12 12 | 4 6 4 0 | * 80 * * * | 1 1 0 x . . x3/2o ♦ 6 | 3 6 | 0 3 0 2 | * * 80 * * | 0 2 0 . o3o *b3x . ♦ 4 | 0 6 | 0 0 4 0 | * * * 80 * | 1 0 1 . o . *b3x3/2o ♦ 6 | 0 12 | 0 0 4 4 | * * * * 80 | 0 1 1 ---------------+-----+---------+-----------------+----------------+--------- x3o3o *b3x . ♦ 32 | 48 48 | 32 24 32 0 | 8 8 0 8 0 | 10 * * x3o . *b3x3/2o ♦ 30 | 30 60 | 10 30 20 20 | 0 5 10 0 5 | * 16 * . o3o *b3x3/2o ♦ 10 | 0 30 | 0 0 20 10 | 0 0 0 5 5 | * * 16
o3x3o3o4s demi( . . . . . ) | 160 | 6 3 | 3 6 6 3 | 3 2 3 1 6 | 1 2 3 ------------------+-----+---------+-----------------+----------------+--------- demi( . x . . . ) | 2 | 480 * | 1 2 1 0 | 2 1 1 0 2 | 1 1 2 . . . o4s | 2 | * 240 | 0 0 2 2 | 0 0 1 1 4 | 0 2 2 ------------------+-----+---------+-----------------+----------------+--------- demi( o3x . . . ) | 3 | 3 0 | 160 * * * | 2 0 1 0 0 | 1 0 2 demi( . x3o . . ) | 3 | 3 0 | * 320 * * | 1 1 0 0 1 | 1 1 1 . x 2 o4s | 4 | 2 2 | * * 240 * | 0 0 1 0 2 | 0 1 2 sefa( . . o3o4s ) | 3 | 0 3 | * * * 160 | 0 0 0 1 2 | 0 2 1 ------------------+-----+---------+-----------------+----------------+--------- demi( o3x3o . . ) ♦ 6 | 12 0 | 4 4 0 0 | 80 * * * * | 1 0 1 demi( . x3o3o . ) ♦ 4 | 6 0 | 0 4 0 0 | * 80 * * * | 1 1 0 o3x 2 o4s ♦ 6 | 6 3 | 2 0 3 0 | * * 80 * * | 0 0 2 . . o3o4s ♦ 4 | 0 6 | 0 0 0 4 | * * * 40 * | 0 2 0 sefa( . x3o3o4s ) ♦ 12 | 12 12 | 0 4 6 4 | * * * * 80 | 0 1 1 ------------------+-----+---------+-----------------+----------------+--------- demi( o3x3o3o . ) ♦ 10 | 30 0 | 10 20 0 0 | 5 5 0 0 0 | 16 * * . x3o3o4s ♦ 32 | 48 48 | 0 32 24 32 | 0 8 0 8 8 | * 10 * sefa( o3x3o3o4s ) ♦ 30 | 60 30 | 20 20 30 10 | 5 0 10 0 5 | * * 16 starting figure: o3x3o3o4x
xxoo3oxxo3ooxx *b3xoox&#xt → all heights = 1/sqrt(2) = 0.707107 (rit || gyro thex || thex || gyro rit) o...3o...3o... *b3o... & | 64 * | 3 3 3 0 0 0 | 3 3 3 3 3 3 0 0 0 0 | 1 3 1 3 3 1 3 0 0 0 | 1 1 3 1 .o..3.o..3.o.. *b3.o.. & | * 96 | 0 0 2 1 4 2 | 0 0 0 2 1 1 2 2 3 4 | 0 0 0 6 1 2 2 1 1 2 | 0 2 3 1 -----------------------------+-------+---------------------+--------------------------------+-------------------------------+---------- x... .... .... .... & | 2 0 | 96 * * * * * | 2 1 0 1 0 0 0 0 0 0 | 1 2 0 2 1 0 0 0 0 0 | 1 1 2 0 .... .... .... x... & | 2 0 | * 96 * * * * | 0 1 2 0 0 1 0 0 0 0 | 0 2 1 0 1 0 2 0 0 0 | 1 0 2 1 oo..3oo..3oo.. *b3oo..&#x & | 1 1 | * * 192 * * * | 0 0 0 1 2 1 0 0 0 0 | 0 0 0 2 1 1 2 0 0 0 | 0 1 2 1 .x.. .... .... .... & | 0 2 | * * * 48 * * | 0 0 0 2 0 0 0 0 2 0 | 0 0 0 4 1 0 0 0 1 0 | 0 2 2 0 .... .x.. .... .... & | 0 2 | * * * * 192 * | 0 0 0 0 1 0 1 1 0 1 | 0 0 0 2 0 1 1 1 0 1 | 0 1 2 1 .oo.3.oo.3.oo. *b3.oo.&#x | 0 2 | * * * * * 96 | 0 0 0 0 0 0 0 0 2 2 | 0 0 0 4 0 0 0 0 1 1 | 0 2 2 0 -----------------------------+-------+---------------------+--------------------------------+-------------------------------+---------- x...3o... .... .... & | 3 0 | 3 0 0 0 0 0 | 64 * * * * * * * * * | 1 1 0 1 0 0 0 0 0 0 | 1 1 1 0 x... .... .... x... & | 4 0 | 2 2 0 0 0 0 | * 48 * * * * * * * * | 0 2 0 0 1 0 0 0 0 0 | 1 0 2 0 .... o... .... *b3x... & | 3 0 | 0 3 0 0 0 0 | * * 64 * * * * * * * | 0 1 1 0 0 0 1 0 0 0 | 1 0 1 1 xx.. .... .... ....&#x & | 2 2 | 1 0 2 1 0 0 | * * * 96 * * * * * * | 0 0 0 2 1 0 0 0 0 0 | 0 1 2 0 .... ox.. .... ....&#x & | 1 2 | 0 0 2 0 1 0 | * * * * 192 * * * * * | 0 0 0 1 0 1 1 0 0 0 | 0 1 1 1 .... .... .... xo..&#x & | 2 1 | 0 1 2 0 0 0 | * * * * * 96 * * * * | 0 0 0 0 1 0 2 0 0 0 | 0 0 2 1 .... .x..3.o.. .... & | 0 3 | 0 0 0 0 3 0 | * * * * * * 64 * * * | 0 0 0 1 0 1 0 1 0 0 | 0 1 1 1 .... .x.. .... *b3.o.. & | 0 3 | 0 0 0 0 3 0 | * * * * * * * 64 * * | 0 0 0 0 0 0 1 1 0 1 | 0 0 2 1 .xo. .... .... ....&#x & | 0 3 | 0 0 0 1 0 2 | * * * * * * * * 96 * | 0 0 0 2 0 0 0 0 1 0 | 0 2 1 0 .... .xx. .... ....&#x | 0 4 | 0 0 0 0 2 2 | * * * * * * * * * 96 | 0 0 0 2 0 0 0 0 0 1 | 0 1 2 0 -----------------------------+-------+---------------------+--------------------------------+-------------------------------+---------- x...3o...3o... .... & ♦ 4 0 | 6 0 0 0 0 0 | 4 0 0 0 0 0 0 0 0 0 | 16 * * * * * * * * * | 1 1 0 0 x...3o... .... *b3x... & ♦ 12 0 | 12 12 0 0 0 0 | 4 6 4 0 0 0 0 0 0 0 | * 16 * * * * * * * * | 1 0 1 0 .... o...3o... *b3x... & ♦ 4 0 | 0 6 0 0 0 0 | 0 0 4 0 0 0 0 0 0 0 | * * 16 * * * * * * * | 1 0 0 1 xxo.3oxx. .... ....&#xt & ♦ 3 9 | 3 0 6 3 6 6 | 1 0 0 3 3 0 1 0 3 3 | * * * 64 * * * * * * | 0 1 1 0 xx.. .... .... xo..&#x & ♦ 4 2 | 2 2 4 1 0 0 | 0 1 0 2 0 2 0 0 0 0 | * * * * 48 * * * * * | 0 0 2 0 .... ox..3oo.. ....&#x & ♦ 1 3 | 0 0 3 0 3 0 | 0 0 0 0 3 0 1 0 0 0 | * * * * * 64 * * * * | 0 1 0 1 .... ox.. .... *b3xo..&#x & ♦ 3 3 | 0 3 6 0 3 0 | 0 0 1 0 3 3 0 1 0 0 | * * * * * * 64 * * * | 0 0 1 1 .... .x..3.o.. *b3.o.. & ♦ 0 6 | 0 0 0 0 12 0 | 0 0 0 0 0 0 4 4 0 0 | * * * * * * * 16 * * | 0 0 1 1 .xo. .... .ox. ....&#x ♦ 0 4 | 0 0 0 2 0 4 | 0 0 0 0 0 0 0 0 4 0 | * * * * * * * * 24 * | 0 2 0 0 .... .xx. .... *b3.oo.&#x ♦ 0 6 | 0 0 0 0 6 3 | 0 0 0 0 0 0 0 2 0 3 | * * * * * * * * * 32 | 0 0 2 0 -----------------------------+-------+---------------------+--------------------------------+-------------------------------+---------- x...3o...3o... *b3x... & ♦ 32 0 | 48 48 0 0 0 0 | 32 24 32 0 0 0 0 0 0 0 | 8 8 8 0 0 0 0 0 0 0 | 2 * * * xxoo3oxxo3ooxx ....&#xt ♦ 8 24 | 12 0 24 12 24 24 | 8 0 0 12 24 0 8 0 24 12 | 2 0 0 8 0 8 0 0 6 0 | * 8 * * xxo.3oxx. .... *b3xoo.&#xt & ♦ 12 18 | 12 12 24 6 24 12 | 4 6 4 12 12 12 4 8 6 12 | 0 1 0 4 6 0 4 1 0 4 | * * 16 * .... ox..3oo.. *b3xo..&#x & ♦ 4 6 | 0 6 12 0 12 0 | 0 0 4 0 12 6 4 4 0 0 | 0 0 1 0 0 4 4 1 0 0 | * * * 16
© 2004-2025 | top of page |