Acronym | siida (alt.: siidcup) |
Name |
small icosicosidodecahedral alterprism, small icosicosidodecahedral cupoliprism, closer siid atop siid |
Segmentochoron display |
© |
Circumradius | sqrt[(4+sqrt(5))/2] = 1.765796 |
Vertex figure |
© |
Face vector | 120, 360, 284, 54 |
Confer | |
External links |
Both bases are aligned parallel in (effectively) the same orientation. But lacings get crossed, thus its height is a bit smaller than for the siidip.
Incidence matrix according to Dynkin symbol
xx3xo5/2ox3*a &#x → height = sqrt[(sqrt(5)-1)/2] = 0.786151
(siid || siid, but with crossed lacings)
o.3o.5/2o.3*a | 60 * | 2 2 2 0 0 | 2 1 1 2 2 1 0 0 0 | 1 2 1 1 0
.o3.o5/2.o3*a | * 60 | 0 0 2 2 2 | 0 0 0 2 1 2 1 2 1 | 0 1 2 1 1
------------------+-------+-----------------+----------------------------+-------------
x. .. .. | 2 0 | 60 * * * * | 1 1 0 1 0 0 0 0 0 | 1 1 1 0 0
.. x. .. | 2 0 | * 60 * * * | 1 0 1 0 1 0 0 0 0 | 1 1 0 1 0
oo3oo5/2oo3*a &#x | 1 1 | * * 120 * * | 0 0 0 1 1 1 0 0 0 | 0 1 1 1 0
.x .. .. | 0 2 | * * * 60 * | 0 0 0 1 0 0 1 1 0 | 0 1 1 0 1
.. .. .x | 0 2 | * * * * 60 | 0 0 0 0 0 1 0 1 1 | 0 0 1 1 1
------------------+-------+-----------------+----------------------------+-------------
x.3x. .. | 6 0 | 3 3 0 0 0 | 20 * * * * * * * * | 1 1 0 0 0
x. .. o.3*a | 3 0 | 3 0 0 0 0 | * 20 * * * * * * * | 1 0 1 0 0
.. x.5/2o. | 5 0 | 0 5 0 0 0 | * * 12 * * * * * * | 1 0 0 1 0
xx .. .. &#x | 2 2 | 1 0 2 1 0 | * * * 60 * * * * * | 0 1 1 0 0
.. xo .. &#x | 2 1 | 0 1 2 0 0 | * * * * 60 * * * * | 0 1 0 1 0
.. .. ox &#x | 1 2 | 0 0 2 0 1 | * * * * * 60 * * * | 0 0 1 1 0
.x3.o .. | 0 3 | 0 0 0 3 0 | * * * * * * 20 * * | 0 1 0 0 1
.x .. .x3*a | 0 6 | 0 0 0 3 3 | * * * * * * * 20 * | 0 0 1 0 1
.. .o5/2.x | 0 5 | 0 0 0 0 5 | * * * * * * * * 12 | 0 0 0 1 1
------------------+-------+-----------------+----------------------------+-------------
x.3x.5/2o.3*a ♦ 60 0 | 60 60 0 0 0 | 20 20 12 0 0 0 0 0 0 | 1 * * * *
xx3xo .. &#x ♦ 6 3 | 3 3 6 3 0 | 1 0 0 3 3 0 1 0 0 | * 20 * * *
xx .. ox3*a &#x ♦ 3 6 | 3 0 6 3 3 | 0 1 0 3 0 3 0 1 0 | * * 20 * *
.. xo5/2ox &#x ♦ 5 5 | 0 5 10 0 5 | 0 0 1 0 5 5 0 0 1 | * * * 12 *
.x3.o5/2.x3*a ♦ 0 60 | 0 0 0 60 60 | 0 0 0 0 0 0 20 20 12 | * * * * 1
or o.3o.5/2o.3*a & | 120 | 2 2 2 | 2 1 1 2 3 | 1 3 1 -------------------+-----+-------------+-----------------+-------- x. .. .. & | 2 | 120 * * | 1 1 0 1 0 | 1 2 0 .. x. .. & | 2 | * 120 * | 1 0 1 0 1 | 1 1 1 oo3oo5/2oo3*a&#x | 2 | * * 120 | 0 0 0 1 2 | 0 2 1 -------------------+-----+-------------+-----------------+-------- x.3x. .. & | 6 | 3 3 0 | 40 * * * * | 1 1 0 x. .. o.3*a & | 3 | 3 0 0 | * 40 * * * | 1 1 0 .. x.5/2o. & | 5 | 0 5 0 | * * 24 * * | 1 0 1 xx .. .. &#x | 4 | 2 0 2 | * * * 60 * | 0 2 0 .. xo .. &#x | 3 | 0 1 2 | * * * * 120 | 0 1 1 -------------------+-----+-------------+-----------------+-------- x.3x.5/2o.3*a & ♦ 60 | 60 60 0 | 20 20 12 0 0 | 2 * * xx3xo .. &#x & ♦ 9 | 6 3 6 | 1 1 0 3 3 | * 40 * .. xo5/2ox &#x ♦ 10 | 0 10 10 | 0 0 2 0 10 | * * 12
β2x3o5β both( . . . . ) | 120 | 2 2 2 | 1 2 1 3 2 | 1 1 3 ----------------+-----+-------------+-----------------+-------- both( . x . . ) | 2 | 120 * * | 1 1 0 0 1 | 0 1 2 β 2 . β | 2 | * 120 * | 0 1 0 2 0 | 1 0 2 sefa( . . o5β ) | 2 | * * 120 | 0 0 1 1 1 | 1 1 1 ----------------+-----+-------------+-----------------+-------- both( . x3o . ) | 3 | 3 0 0 | 40 * * * * | 0 1 1 β2x 2 β | 4 | 2 2 0 | * 60 * * * | 0 0 2 . . o5β | 5 | 0 0 5 | * * 24 * * | 1 1 0 {5/2} sefa( β 2 o5β ) | 3 | 0 2 1 | * * * 120 * | 1 0 1 sefa( . x3o5β ) | 6 | 3 0 3 | * * * * 40 | 0 1 1 ----------------+-----+-------------+-----------------+-------- β 2 o5β ♦ 10 | 0 10 10 | 0 0 2 10 0 | 12 * * . x3o5β ♦ 60 | 60 0 60 | 20 0 12 0 20 | * 2 * sefa( β2x3o5β ) ♦ 9 | 6 6 3 | 1 3 0 3 1 | * * 40 starting figure: x x3o5x
© 2004-2024 | top of page |