Acronym siida (alt.: siidcup)
Name small icosicosidodecahedral alterprism,
small icosicosidodecahedral cupoliprism,
closer siid atop siid
Segmentochoron display
 ©
Circumradius sqrt[(4+sqrt(5))/2] = 1.765796
Vertex figure
 ©
Face vector 120, 360, 284, 54
Confer
uniform relative:
siidip  
general polytopal classes:
scaliform  
External
links
hedrondude   polytopewiki  

Both bases are aligned parallel in (effectively) the same orientation. But lacings get crossed, thus its height is a bit smaller than for the siidip.


Incidence matrix according to Dynkin symbol

xx3xo5/2ox3*a &#x   → height = sqrt[(sqrt(5)-1)/2] = 0.786151
(siid || siid, but with crossed lacings)

o.3o.5/2o.3*a     | 60  * |  2  2   2  0  0 |  2  1  1  2  2  1  0  0  0 | 1  2  1  1 0
.o3.o5/2.o3*a     |  * 60 |  0  0   2  2  2 |  0  0  0  2  1  2  1  2  1 | 0  1  2  1 1
------------------+-------+-----------------+----------------------------+-------------
x. ..   ..        |  2  0 | 60  *   *  *  * |  1  1  0  1  0  0  0  0  0 | 1  1  1  0 0
.. x.   ..        |  2  0 |  * 60   *  *  * |  1  0  1  0  1  0  0  0  0 | 1  1  0  1 0
oo3oo5/2oo3*a &#x |  1  1 |  *  * 120  *  * |  0  0  0  1  1  1  0  0  0 | 0  1  1  1 0
.x ..   ..        |  0  2 |  *  *   * 60  * |  0  0  0  1  0  0  1  1  0 | 0  1  1  0 1
.. ..   .x        |  0  2 |  *  *   *  * 60 |  0  0  0  0  0  1  0  1  1 | 0  0  1  1 1
------------------+-------+-----------------+----------------------------+-------------
x.3x.   ..        |  6  0 |  3  3   0  0  0 | 20  *  *  *  *  *  *  *  * | 1  1  0  0 0
x. ..   o.3*a     |  3  0 |  3  0   0  0  0 |  * 20  *  *  *  *  *  *  * | 1  0  1  0 0
.. x.5/2o.        |  5  0 |  0  5   0  0  0 |  *  * 12  *  *  *  *  *  * | 1  0  0  1 0
xx ..   ..    &#x |  2  2 |  1  0   2  1  0 |  *  *  * 60  *  *  *  *  * | 0  1  1  0 0
.. xo   ..    &#x |  2  1 |  0  1   2  0  0 |  *  *  *  * 60  *  *  *  * | 0  1  0  1 0
.. ..   ox    &#x |  1  2 |  0  0   2  0  1 |  *  *  *  *  * 60  *  *  * | 0  0  1  1 0
.x3.o   ..        |  0  3 |  0  0   0  3  0 |  *  *  *  *  *  * 20  *  * | 0  1  0  0 1
.x ..   .x3*a     |  0  6 |  0  0   0  3  3 |  *  *  *  *  *  *  * 20  * | 0  0  1  0 1
.. .o5/2.x        |  0  5 |  0  0   0  0  5 |  *  *  *  *  *  *  *  * 12 | 0  0  0  1 1
------------------+-------+-----------------+----------------------------+-------------
x.3x.5/2o.3*a      60  0 | 60 60   0  0  0 | 20 20 12  0  0  0  0  0  0 | 1  *  *  * *
xx3xo   ..    &#x   6  3 |  3  3   6  3  0 |  1  0  0  3  3  0  1  0  0 | * 20  *  * *
xx ..   ox3*a &#x   3  6 |  3  0   6  3  3 |  0  1  0  3  0  3  0  1  0 | *  * 20  * *
.. xo5/2ox    &#x   5  5 |  0  5  10  0  5 |  0  0  1  0  5  5  0  0  1 | *  *  * 12 *
.x3.o5/2.x3*a       0 60 |  0  0   0 60 60 |  0  0  0  0  0  0 20 20 12 | *  *  *  * 1
or
o.3o.5/2o.3*a    & | 120 |   2   2   2 |  2  1  1  2   3 | 1  3  1
-------------------+-----+-------------+-----------------+--------
x. ..   ..       & |   2 | 120   *   * |  1  1  0  1   0 | 1  2  0
.. x.   ..       & |   2 |   * 120   * |  1  0  1  0   1 | 1  1  1
oo3oo5/2oo3*a&#x   |   2 |   *   * 120 |  0  0  0  1   2 | 0  2  1
-------------------+-----+-------------+-----------------+--------
x.3x.   ..       & |   6 |   3   3   0 | 40  *  *  *   * | 1  1  0
x. ..   o.3*a    & |   3 |   3   0   0 |  * 40  *  *   * | 1  1  0
.. x.5/2o.       & |   5 |   0   5   0 |  *  * 24  *   * | 1  0  1
xx ..   ..   &#x   |   4 |   2   0   2 |  *  *  * 60   * | 0  2  0
.. xo   ..   &#x   |   3 |   0   1   2 |  *  *  *  * 120 | 0  1  1
-------------------+-----+-------------+-----------------+--------
x.3x.5/2o.3*a    &   60 |  60  60   0 | 20 20 12  0   0 | 2  *  *
xx3xo   ..   &#x &    9 |   6   3   6 |  1  1  0  3   3 | * 40  *
.. xo5/2ox   &#x     10 |   0  10  10 |  0  0  2  0  10 | *  * 12

β2x3o5β

both( . . . . ) | 120 |   2   2   2 |  1  2  1   3  2 |  1 1  3
----------------+-----+-------------+-----------------+--------
both( . x . . ) |   2 | 120   *   * |  1  1  0   0  1 |  0 1  2
      β 2 . β   |   2 |   * 120   * |  0  1  0   2  0 |  1 0  2
sefa( . . o5β ) |   2 |   *   * 120 |  0  0  1   1  1 |  1 1  1
----------------+-----+-------------+-----------------+--------
both( . x3o . ) |   3 |   3   0   0 | 40  *  *   *  * |  0 1  1
      β2x 2 β   |   4 |   2   2   0 |  * 60  *   *  * |  0 0  2
      . . o5β   |   5 |   0   0   5 |  *  * 24   *  * |  1 1  0 {5/2}
sefa( β 2 o5β ) |   3 |   0   2   1 |  *  *  * 120  * |  1 0  1
sefa( . x3o5β ) |   6 |   3   0   3 |  *  *  *   * 40 |  0 1  1
----------------+-----+-------------+-----------------+--------
      β 2 o5β     10 |   0  10  10 |  0  0  2  10  0 | 12 *  *
      . x3o5β     60 |  60   0  60 | 20  0 12   0 20 |  * 2  *
sefa( β2x3o5β )    9 |   6   6   3 |  1  3  0   3  1 |  * * 40

starting figure: x x3o5x

© 2004-2024
top of page