Acronym | seside |
TOCID symbol | sIID*, ssI |
Name |
small snub icosicosidodecahedron, snub disicosidodecahedron, holosnub icosahedron, hastur |
© © | |
Circumradius | sqrt[13+3 sqrt(5)+sqrt[102+46 sqrt(5)]]/4 = 1.458190 |
Vertex figure | [5/2,35] |
Colonel of regiment | (is itself locally convex – no other uniform polyhedral members) |
Snub derivation |
|
Face vector | 60, 180, 112 |
External links |
As abstract polytope seside is isomorphic to sirsid, thereby replacing prograde icosahedral triangles by retrograde ones.
As mere alternated faceting the 2{3}-compound is regular, for sure. It is by the afterwards to be applied step back to equally sized edges that those compounds become non-regular.
Incidence matrix according to Dynkin symbol
s5/2s3s3*a demi( . . . ) | 60 | 2 2 2 | 1 1 1 3 -------------------+----+----------+------------ sefa( s5/2s . ) | 2 | 60 * * | 1 0 0 1 sefa( s . s3*a ) | 2 | * 60 * | 0 1 0 1 sefa( . s3s ) | 2 | * * 60 | 0 0 1 1 -------------------+----+----------+------------ s5/2s . ♦ 5 | 5 0 0 | 12 * * * s . s3*a ♦ 3 | 0 3 0 | * 20 * * . s3s ♦ 3 | 0 0 3 | * * 20 * sefa( s5/2s3s3*a ) | 3 | 1 1 1 | * * * 60
or demi( . . . ) | 60 | 2 4 | 1 2 3 ----------------------+----+--------+--------- sefa( s5/2s . ) | 2 | 60 * | 1 0 1 sefa( s . s3*a ) & | 2 | * 120 | 0 1 1 ----------------------+----+--------+--------- s5/2s . ♦ 5 | 5 0 | 12 * * s . s3*a & ♦ 3 | 0 3 | * 40 * sefa( s5/2s3s3*a ) | 3 | 1 2 | * * 60 starting figure: x5/2x3x3*a
β3β5o both( . . . ) | 60 | 2 2 2 | 1 1 1 3 -----------------+----+----------+------------ sefa( s3s . (r)) | 2 | 60 * * | 1 0 0 1 sefa( s3s . (l)) | 2 | * 60 * | 0 1 0 1 sefa( . β5o ) | 2 | * * 60 | 0 0 1 1 -----------------+----+----------+------------ s3s . (r) ♦ 3 | 3 0 0 | 20 * * * s3s . (l) ♦ 3 | 0 3 0 | * 20 * * . β5o ♦ 5 | 0 0 5 | * * 12 * sefa( β3β5o ) | 3 | 1 1 1 | * * * 60
or both( . . . ) | 60 | 4 2 | 2 1 3 --------------+----+--------+--------- sefa( s3s . ) | 2 | 120 * | 1 0 1 sefa( . β5o ) | 2 | * 60 | 0 1 1 --------------+----+--------+--------- both( s3s . ) ♦ 3 | 3 0 | 40 * * as coplanar pair of {3} . β5o ♦ 5 | 0 5 | * 12 * sefa( β3β5o ) | 3 | 2 1 | * * 60
or both( . . . ) | 60 | 4 2 | 2 1 3 --------------+----+--------+--------- sefa( s3s . ) | 2 | 120 * | 1 0 1 sefa( . β5o ) | 2 | * 60 | 0 1 1 --------------+----+--------+--------- both( s3s . ) ♦ 6 | 6 0 | 20 * * as non-regular compound of 2{3} . β5o ♦ 5 | 0 5 | * 12 * sefa( β3β5o ) | 3 | 2 1 | * * 60 starting figure: x3x5o
© 2004-2024 | top of page |