| Acronym | seside |
| TOCID symbol | sIID*, ssI |
| Name |
small snub icosicosidodecahedron, snub disicosidodecahedron, holosnub icosahedron, hastur |
| VRML |
|
| Circumradius | sqrt[13+3 sqrt(5)+sqrt[102+46 sqrt(5)]]/4 = 1.458190 |
| Vertex figure | [5/2,35] |
| Colonel of regiment | (is itself locally convex – no other uniform polyhedral members) |
|
Snub derivation / VRML |
|
| Face vector | 60, 180, 112 |
|
External links |
|
As abstract polytope seside is isomorphic to sirsid, thereby replacing prograde icosahedral triangles by retrograde ones.
As mere alternated faceting the 2{3}-compound is regular, for sure. It is by the afterwards to be applied step back to equally sized edges that those compounds become non-regular.
Incidence matrix according to Dynkin symbol
s
3 / \ 3
s---s
5/2
s5/2s3s3*a
demi( . . . ) | 60 | 2 2 2 | 1 1 1 3
-------------------+----+----------+------------
sefa( s5/2s . ) | 2 | 60 * * | 1 0 0 1
sefa( s . s3*a ) | 2 | * 60 * | 0 1 0 1
sefa( . s3s ) | 2 | * * 60 | 0 0 1 1
-------------------+----+----------+------------
s5/2s . ♦ 5 | 5 0 0 | 12 * * *
s . s3*a ♦ 3 | 0 3 0 | * 20 * *
. s3s ♦ 3 | 0 0 3 | * * 20 *
sefa( s5/2s3s3*a ) | 3 | 1 1 1 | * * * 60
or
demi( . . . ) | 60 | 2 4 | 1 2 3
----------------------+----+--------+---------
sefa( s5/2s . ) | 2 | 60 * | 1 0 1
sefa( s . s3*a ) & | 2 | * 120 | 0 1 1
----------------------+----+--------+---------
s5/2s . ♦ 5 | 5 0 | 12 * *
s . s3*a & ♦ 3 | 0 3 | * 40 *
sefa( s5/2s3s3*a ) | 3 | 1 2 | * * 60
starting figure: x5/2x3x3*a
β3β5o
both( . . . ) | 60 | 2 2 2 | 1 1 1 3
-----------------+----+----------+------------
sefa( s3s . (r)) | 2 | 60 * * | 1 0 0 1
sefa( s3s . (l)) | 2 | * 60 * | 0 1 0 1
sefa( . β5o ) | 2 | * * 60 | 0 0 1 1
-----------------+----+----------+------------
s3s . (r) ♦ 3 | 3 0 0 | 20 * * *
s3s . (l) ♦ 3 | 0 3 0 | * 20 * *
. β5o ♦ 5 | 0 0 5 | * * 12 *
sefa( β3β5o ) | 3 | 1 1 1 | * * * 60
or
both( . . . ) | 60 | 4 2 | 2 1 3
--------------+----+--------+---------
sefa( s3s . ) | 2 | 120 * | 1 0 1
sefa( . β5o ) | 2 | * 60 | 0 1 1
--------------+----+--------+---------
both( s3s . ) ♦ 3 | 3 0 | 40 * * as coplanar pair of {3}
. β5o ♦ 5 | 0 5 | * 12 *
sefa( β3β5o ) | 3 | 2 1 | * * 60
or
both( . . . ) | 60 | 4 2 | 2 1 3
--------------+----+--------+---------
sefa( s3s . ) | 2 | 120 * | 1 0 1
sefa( . β5o ) | 2 | * 60 | 0 1 1
--------------+----+--------+---------
both( s3s . ) ♦ 6 | 6 0 | 20 * * as non-regular compound of 2{3}
. β5o ♦ 5 | 0 5 | * 12 *
sefa( β3β5o ) | 3 | 2 1 | * * 60
starting figure: x3x5o
© 2004-2025 | top of page |