Acronym | tutcupip |
Name |
tuttip atop inverted tuttip, tuta-prism, medial segment of rittip |
Circumradius | sqrt(7)/2 = 1.322876 |
Lace city in approx. ASCII-art |
x3o x x3x x u3o x o3u x x3x x o3x x |
x3x3o o3x3x x3x3o o3x3x | |
Face vector | 48, 144, 164, 84, 18 |
Confer |
|
Incidence matrix according to Dynkin symbol
xx ox3xx3xo&#x → height = 1/sqrt(2) = 0.707107
(tuttip || inv tuttip)
o. o.3o.3o. | 24 * | 1 2 1 2 0 0 0 | 2 1 1 2 2 1 2 2 0 0 0 0 | 1 2 1 1 2 2 1 1 2 0 0 0 | 1 1 1 2 1 0
.o .o3.o3.o | * 24 | 0 0 0 2 1 1 2 | 0 0 0 0 2 2 2 1 1 2 2 1 | 0 0 0 2 2 1 2 1 1 2 1 1 | 0 2 1 1 1 1
---------------+-------+----------------------+-------------------------------+-----------------------------+------------
x. .. .. .. | 2 0 | 12 * * * * * * | 2 1 0 0 2 0 0 0 0 0 0 0 | 1 2 0 1 2 2 0 0 0 0 0 0 | 1 1 1 2 0 0
.. .. x. .. | 2 0 | * 24 * * * * * | 1 0 1 1 0 0 1 0 0 0 0 0 | 1 1 1 0 1 0 1 0 1 0 0 0 | 1 1 0 1 1 0
.. .. .. x. | 2 0 | * * 12 * * * * | 0 1 0 2 0 0 0 2 0 0 0 0 | 0 2 1 0 0 2 0 1 2 0 0 0 | 1 0 1 2 1 0
oo oo3oo3oo&#x | 1 1 | * * * 48 * * * | 0 0 0 0 1 1 1 1 0 0 0 0 | 0 0 0 1 1 1 1 1 1 0 0 0 | 0 1 1 1 1 0
.x .. .. .. | 0 2 | * * * * 12 * * | 0 0 0 0 2 0 0 0 1 2 0 0 | 0 0 0 2 2 1 0 0 0 2 1 0 | 0 2 1 1 0 1
.. .x .. .. | 0 2 | * * * * * 12 * | 0 0 0 0 0 2 0 0 1 0 2 0 | 0 0 0 2 0 0 2 1 0 2 0 1 | 0 2 1 0 1 1
.. .. .x .. | 0 2 | * * * * * * 24 | 0 0 0 0 0 0 1 0 0 1 1 1 | 0 0 0 0 1 0 1 0 1 1 1 1 | 0 1 0 1 1 1
---------------+-------+----------------------+-------------------------------+-----------------------------+------------
x. .. x. .. | 4 0 | 2 2 0 0 0 0 0 | 12 * * * * * * * * * * * | 1 1 0 0 1 0 0 0 0 0 0 0 | 1 1 0 1 0 0
x. .. .. x. | 4 0 | 2 0 2 0 0 0 0 | * 6 * * * * * * * * * * | 0 2 0 0 0 2 0 0 0 0 0 0 | 1 0 1 2 0 0
.. o.3x. .. | 3 0 | 0 3 0 0 0 0 0 | * * 8 * * * * * * * * * | 1 0 1 0 0 0 1 0 0 0 0 0 | 1 1 0 0 1 0
.. .. x.3x. | 6 0 | 0 3 3 0 0 0 0 | * * * 8 * * * * * * * * | 0 1 1 0 0 0 0 0 1 0 0 0 | 1 0 0 1 1 0
xx .. .. ..&#x | 2 2 | 1 0 0 2 1 0 0 | * * * * 24 * * * * * * * | 0 0 0 1 1 1 0 0 0 0 0 0 | 0 1 1 1 0 0
.. ox .. ..&#x | 1 2 | 0 0 0 2 0 1 0 | * * * * * 24 * * * * * * | 0 0 0 1 0 0 1 1 0 0 0 0 | 0 1 1 0 1 0
.. .. xx ..&#x | 2 2 | 0 1 0 2 0 0 1 | * * * * * * 24 * * * * * | 0 0 0 0 1 0 1 0 1 0 0 0 | 0 1 0 1 1 0
.. .. .. xo&#x | 2 1 | 0 0 1 2 0 0 0 | * * * * * * * 24 * * * * | 0 0 0 0 0 1 0 1 1 0 0 0 | 0 0 1 1 1 0
.x .x .. .. | 0 4 | 0 0 0 0 2 2 0 | * * * * * * * * 6 * * * | 0 0 0 2 0 0 0 0 0 2 0 0 | 0 2 1 0 0 1
.x .. .x .. | 0 4 | 0 0 0 0 2 0 2 | * * * * * * * * * 12 * * | 0 0 0 0 1 0 0 0 0 1 1 0 | 0 1 0 1 0 1
.. .x3.x .. | 0 6 | 0 0 0 0 0 3 3 | * * * * * * * * * * 8 * | 0 0 0 0 0 0 1 0 0 1 0 1 | 0 1 0 0 1 1
.. .. .x3.o | 0 3 | 0 0 0 0 0 0 3 | * * * * * * * * * * * 8 | 0 0 0 0 0 0 0 0 1 0 1 1 | 0 0 0 1 1 1
---------------+-------+----------------------+-------------------------------+-----------------------------+------------
x. o.3x. .. ♦ 6 0 | 3 6 0 0 0 0 0 | 3 0 2 0 0 0 0 0 0 0 0 0 | 4 * * * * * * * * * * * | 1 1 0 0 0 0
x. .. x.3x. ♦ 12 0 | 6 6 6 0 0 0 0 | 3 3 0 2 0 0 0 0 0 0 0 0 | * 4 * * * * * * * * * * | 1 0 0 1 0 0
.. o.3x.3x. ♦ 12 0 | 0 12 6 0 0 0 0 | 0 0 4 4 0 0 0 0 0 0 0 0 | * * 2 * * * * * * * * * | 1 0 0 0 1 0
xx ox .. ..&#x ♦ 2 4 | 1 0 0 4 2 2 0 | 0 0 0 0 2 2 0 0 1 0 0 0 | * * * 12 * * * * * * * * | 0 1 1 0 0 0
xx .. xx ..&#x ♦ 4 4 | 2 2 0 4 2 0 2 | 1 0 0 0 2 0 2 0 0 1 0 0 | * * * * 12 * * * * * * * | 0 1 0 1 0 0
xx .. .. xo&#x ♦ 4 2 | 2 0 2 4 1 0 0 | 0 1 0 0 2 0 0 2 0 0 0 0 | * * * * * 12 * * * * * * | 0 0 1 1 0 0
.. ox3xx ..&#x ♦ 3 6 | 0 3 0 6 0 3 3 | 0 0 1 0 0 3 3 0 0 0 1 0 | * * * * * * 8 * * * * * | 0 1 0 0 1 0
.. ox .. xo&#x ♦ 2 2 | 0 0 1 4 0 1 0 | 0 0 0 0 0 2 0 2 0 0 0 0 | * * * * * * * 12 * * * * | 0 0 1 0 1 0
.. .. xx3xo&#x ♦ 6 3 | 0 3 3 6 0 0 3 | 0 0 0 1 0 0 3 3 0 0 0 1 | * * * * * * * * 8 * * * | 0 0 0 1 1 0
.x .x3.x .. ♦ 0 12 | 0 0 0 0 6 6 6 | 0 0 0 0 0 0 0 0 3 3 2 0 | * * * * * * * * * 4 * * | 0 1 0 0 0 1
.x .. .x3.o ♦ 0 6 | 0 0 0 0 3 0 6 | 0 0 0 0 0 0 0 0 0 3 0 2 | * * * * * * * * * * 4 * | 0 0 0 1 0 1
.. .x3.x3.o ♦ 0 12 | 0 0 0 0 0 6 12 | 0 0 0 0 0 0 0 0 0 0 4 4 | * * * * * * * * * * * 2 | 0 0 0 0 1 1
---------------+-------+----------------------+-------------------------------+-----------------------------+------------
x. o.3x.3x. ♦ 24 0 | 12 24 12 0 0 0 0 | 12 6 8 8 0 0 0 0 0 0 0 0 | 4 4 2 0 0 0 0 0 0 0 0 0 | 1 * * * * *
xx ox3xx ..&#x ♦ 6 12 | 3 6 0 12 6 6 6 | 3 0 2 0 6 6 6 0 3 3 2 0 | 1 0 0 3 3 0 2 0 0 1 0 0 | * 4 * * * *
xx ox .. xo&#x ♦ 4 4 | 2 0 2 8 2 2 0 | 0 1 0 0 4 4 0 4 1 0 0 0 | 0 0 0 2 0 2 0 2 0 0 0 0 | * * 6 * * *
xx .. xx3xo&#x ♦ 12 6 | 6 6 6 12 3 0 6 | 3 3 0 2 6 0 6 6 0 3 0 2 | 0 1 0 0 3 3 0 0 2 0 1 0 | * * * 4 * *
.. ox3xx3xo&#x ♦ 12 12 | 0 12 6 24 0 6 12 | 0 0 4 4 0 12 12 12 0 0 4 4 | 0 0 1 0 0 0 4 6 4 0 0 1 | * * * * 2 *
.x .x3.x3.o ♦ 0 24 | 0 0 0 0 12 12 24 | 0 0 0 0 0 0 0 0 6 12 8 8 | 0 0 0 0 0 0 0 0 0 4 4 2 | * * * * * 1
x s4o3x2s = x2s4o3x2s
(tuta || tuta)
demi( . . . . . ) | 48 | 1 2 1 2 | 2 1 1 2 2 2 3 | 1 2 1 1 2 3 3 | 1 1 1 3
------------------+----+-------------+----------------------+-------------------+--------
demi( x . . . . ) | 2 | 24 * * * | 2 0 1 2 0 0 0 | 1 2 0 0 2 3 0 | 1 1 0 3
demi( . . . x . ) | 2 | * 48 * * | 1 1 0 0 1 1 0 | 1 1 1 0 1 0 2 | 1 0 1 2
. s4o . . | 2 | * * 24 * | 0 0 1 0 0 2 2 | 0 0 1 1 2 2 2 | 1 1 1 2
. s . 2 s | 2 | * * * 48 | 0 0 0 1 1 0 2 | 0 1 0 1 0 2 2 | 0 1 1 2
------------------+----+-------------+----------------------+-------------------+--------
demi( x . . x . ) | 4 | 2 2 0 0 | 24 * * * * * * | 1 1 0 0 1 0 0 | 1 0 0 2
demi( . . o3x . ) | 3 | 0 3 0 0 | * 16 * * * * * | 1 0 1 0 0 0 1 | 1 0 1 1
x s4o . . | 4 | 2 0 2 0 | * * 12 * * * * | 0 0 0 0 2 2 0 | 1 1 0 2
x s . 2 s | 4 | 2 0 0 2 | * * * 24 * * * | 0 1 0 0 0 2 0 | 0 1 0 2
. s 2 x2s | 4 | 0 2 0 2 | * * * * 24 * * | 0 1 0 0 0 0 2 | 0 0 1 2
sefa( . s4o3x . ) | 6 | 0 3 3 0 | * * * * * 16 * | 0 0 1 0 1 0 1 | 1 0 1 1
sefa( . s4o 2 s ) | 3 | 0 0 1 2 | * * * * * * 48 | 0 0 0 1 0 1 1 | 0 1 1 1
------------------+----+-------------+----------------------+-------------------+--------
demi( x . o3x . ) ♦ 6 | 3 6 0 0 | 3 2 0 0 0 0 0 | 8 * * * * * * | 1 0 0 1
x s 2 x2s ♦ 8 | 4 4 0 4 | 2 0 0 2 2 0 0 | * 12 * * * * * | 0 0 0 2
. s4o3x . ♦ 12 | 0 12 6 0 | 0 4 0 0 0 4 0 | * * 4 * * * * | 1 0 1 0
. s4o 2 s ♦ 4 | 0 0 2 4 | 0 0 0 0 0 0 4 | * * * 12 * * * | 0 1 1 0
sefa( x s4o3x . ) ♦ 12 | 6 6 6 0 | 3 0 3 0 0 2 0 | * * * * 8 * * | 1 0 0 1
sefa( x s4o 2 s ) ♦ 6 | 3 0 2 4 | 0 0 1 2 0 0 2 | * * * * * 24 * | 0 1 0 1
sefa( . s4o3x2s ) ♦ 9 | 0 6 3 6 | 0 1 0 0 3 1 3 | * * * * * * 16 | 0 0 1 1
------------------+----+-------------+----------------------+-------------------+--------
x s4o3x . ♦ 24 | 12 24 12 0 | 12 8 6 0 0 8 0 | 4 0 2 0 4 0 0 | 2 * * *
x s4o 2 s ♦ 8 | 4 0 4 8 | 0 0 2 4 0 0 8 | 0 0 0 2 0 4 0 | * 6 * *
. s4o3x2s ♦ 24 | 0 24 12 24 | 0 8 0 0 12 8 24 | 0 0 2 6 0 0 8 | * * 2 *
sefa( x s4o3x2s ) ♦ 18 | 9 12 6 12 | 6 2 3 6 6 2 6 | 1 3 0 0 1 3 2 | * * * 8
starting figure: x x4o3x x
© 2004-2025 | top of page |