Acronym ..., 10Y4-8T-2-hel
Name helical staggered 2×60°-gyrated 10Y4-8T-0
 
 ©
Pattern
(fundamental domain)
     u         Vertices:
    /|\        u = vertices within lower trat plane
   / c \       o = vertices within upper trat plane
  a _o_ b      
 /_d/N\d_\     Edges:
u--/-a-\--u    a = {4}-inc. trat-edges
|\b  N  a/|    b = not {4}-inc. trat-edges
c/b  N  a\c    c = {4}-inc. lace-edges
o-_--a--_-o    d = not {4}-inc. lace-edges
 \ d\N/d /     
  a  u  b      Triangles:
   \ | /       N = betw. T and Y4
    \c/        Y = betw. Y4 and Y4
     o         T = betw. T and T
Confer
related CRF honeycombs:
10Y4-8T-0   10Y4-8T-1-alt   10Y4-8T-1-hel (r/l)   10Y4-8T-2-alt   10Y4-8T-3   5Y4-4T-6P3-tri-2-hel (r/l)  
general polytopal classes:
scaliform  
External
links
mcneill

This scaliform honeycomb is derived from 5Y4-4T-6P3-tri-2-hel by withdrawing the elongating layers of trips.

Further it occurs as gyration at one set of parallel trat sections of 10Y4-8T-0 in steps of 2×60° using the 3-periodic helical staggering mode.


Incidence matrix

(N→∞)

N |  4 2 2  4 |  6  6  6  6 4 |  8 10
--+-----------+---------------+------
2 | 2N * *  * |  2  1  0  1 1 |  2  3  a
2 |  * N *  * |  2  0  2  0 0 |  2  2  b
2 |  * * N  * |  0  2  2  0 2 |  2  4  c
2 |  * * * 2N |  0  1  1  2 0 |  2  2  d
--+-----------+---------------+------
3 |  2 1 0  0 | 2N  *  *  * * |  1  1  aab-N
3 |  1 0 1  1 |  * 2N  *  * * |  1  1  acd
3 |  0 1 1  1 |  *  * 2N  * * |  1  1  bcd
3 |  1 0 0  2 |  *  *  * 2N * |  1  1  add
4 |  2 0 2  0 |  *  *  *  * N |  0  2  acac
--+-----------+---------------+------
4 |  2 1 1  2 |  1  1  1  1 0 | 2N  *  tet
5 |  3 1 2  2 |  1  1  1  1 1 |  * 2N  squippy

© 2004-2024
top of page