Site Map | Polytopes | Dynkin Diagrams | Vertex Figures, etc. | Incidence Matrices | Index |
In February 2014 a noteworthy combination from
was brought up by W. Gevaert. In the sequel a vivid research for class members of according CRFs was initiated, which then provided several so far unknown "crown jewels".
Gevaert himself also elaborated some of the first known examples, but then he reduced to just outline his ideas and contribute to combinatorics. Quickfur, "student5", and Čtrnáct also found some further individual examples. A more systematical research with several more finds and esp. the concrete cell evaluation of all known cases then has been done by Klitzing. (Therefore the following content mostly is original work.)
For kaleidoscopical construction usually a seed point within the fundamental domain is used. Its reflection all over the mirror symmetry then constructs the vertex set of the to be designed polytope. Obviously an other such vertex outside the domain likewise could be used, again providing the same vertex set – but then other elements in the dimensions beyond. Generally these such derived polytopes then will be facetings of the former polytope. If esp. that point was taken to be a direct mirror image of that point within, then that edge, which is derived as the hull of these 2 points, gets just inverted.
If one wonders what these kaleido-faceted polytopes would look like in terms of their Dynkin diagram, then clearly some edges, i.e. node symbols which formerly had prograde unit size, now will have retrograde unite size. That is, some x just gets reflected into a (-x). But because faces, which stay within their face planes, keep their neighbouring vertices still being connected, the other edges accordingly will get elongated thereby by the amount of a vertex figure, i.e. by the corresponding shortchord.
Assume we start with any (sub)diagram x-n/m-y (where y is just any length edge, possibly zero), then by flipping that x into (-x) we elongate the neighbouring edge from size y into y+cos(π m/n)x. Moreover, if we start with some layered starting figure, then such an edge flip could be applied independently in any layer. We just have to check, that still any layer can be connected by unit-lacings to at least one of the other layers. For its converse cf. †).
Obviously retrograde edges would not be allowed in CRF polytopes. To that aim a corresponding Stott expansion will come in, which then adds one unit to the respective node position – uniformely within all layers. Sometimes longer edges also would occur within the symbols of individual layers. Here we have to check then that those "edges" become just false ones (pseudo edges), burried somewhere within. E.g. covered by inter-layer lacing elements. For its converse cf. ‡).
Besides of the former exclusions we still have to check for the regularity of all the polygonal faces (of the total figure).
One of the most common cases wrt. ‡) can already be filtered out a priori: When considering convex starting polytopes which become displayed as mere lace towers, i.e. when keeping the layer heights throughout all the transformations, then mixtures of prograde and retrograde edges at the same node would not be allowable. This is because we have to apply a Stott expansion to the retrograde edges, bringing these edges then back to zero size. But this same expansion would double up simultanuously the prograde edges at the same node. Generally speaking, an inner-layer edge of size u = 2x might be allowable, e.g. as the equator of an hexagon. But within the reach of the given preconditions the 2 adjoined "halves" would not be co-planar before the expansion, and so by mere parallel translation cannot become thereafter.
This same argument surely serves valid for full dimensional subsymmetries which are cartesian products, provided all transformations affect only one cartesian component, while the other keeps unchanged. (This then would be the generalization of unchanged heights.) Even changes in more than one component are compensated here, provided this change can be split into independent changes in either affected component each.
Wrt. mere lace towers we likewise have an a priori restriction: lacing triangles freely can be affected by edge reversals, so can squares only if both parallel edges are affected simultanuously, but any other 2D face can not. Nor could any face be elongated within its face plain by later partial Stott expansions, except of those which do respect the full symmetry of that polygon.
†) - Layers fall apart into subsets: at least one layer cannot be connected to none of the other ones by unit inter-layer lacings.
Or dead ends will arise: vertices of at least one non-extremal layer wrt. some axial orientation do not allow for unit inter-lacings
to any higher (or lower) vertex.
‡) - At least one non-unit layer edge survives at the outside.
°) - Asks for some non-regular polygonal faces.
in o2o2o subsymmetry (up) | ||
---|---|---|
Representation: |
xof 2 fxo 2 ofx &#zx (ike) = xofox 2 ofxfo &#xt | |
All layers & kaleido-facetings per layer: |
A: x 2 f 2 o → A1: (-x) 2 f 2 o B: o 2 x 2 f → B2: o 2 (-x) 2 f C: f 2 o 2 x → C3: f 2 o 2 (-x) | |
A priori invalid combinations: |
none | |
Other layer-combinations: |
A1: (-x)of 2 fxo 2 ofx &#zx A1B2: (-x)of 2 f(-x)o 2 ofx &#zx → †) A1B2C3: (-x)of 2 f(-x)o 2 of(-x) &#zx → †) | |
Stott expansion: (derived potential CRFs) |
oxF 2 fxo 2 ofx &#zx (bilbiro, J91) = oxFxo 2 ofxfo &#xt |
in . o3o subsymmetry (up) | ||
---|---|---|
Representation: |
xofo 3 ofox &#xt (ike) | |
All layers & kaleido-facetings per layer: |
A: x 3 o → A1: (-x) 3 x B: o 3 f C: f 3 o D: o 3 x → D2: x 3 (-x) | |
A priori invalid combinations: |
A1 + D2 → ‡) (u in A, u in D) | |
Other layer-combinations: |
A1: (-x)ofo 3 xfox &#xt | |
Stott expansion: (derived potential CRFs) |
oxFx 3 xfox &#xt (thawro, J92) | |
|
in . o5o subsymmetry (up) | ||
---|---|---|
Representation: |
oxoo 5 ooxo &#xt (ike) | |
All layers & kaleido-facetings per layer: |
A: o 5 o B: x 5 o → B1: (-x) 5 f C: o 5 x → C2: f 5 (-x) D: o 5 o | |
A priori invalid combinations: |
none | |
Other layer-combinations: |
B1: o(-x)oo 5 ofxo &#xt B1C2: o(-x)fo 5 of(-x)o &#xt → †) | |
Stott expansion: (derived potential CRFs) |
xoxx 5 ofxo &#xt (pocuro, J32) related: ..xx 5 ..xo &#xt (pecu, J5) related: xox. 5 ofx. &#xt (pero, J6) | |
|
in o3o3o subsymmetry (up) | ||
---|---|---|
Representation: |
qo 3 xx 3 oq &#zx (sirco) | |
All layers & kaleido-facetings per layer: |
A: q 3 x 3 o → A2: w 3 (-x) 3 x → A23: w 3 o 3 (-x) B: o 3 x 3 q → B2: x 3 (-x) 3 w → B21: (-x) 3 o 3 w | |
A priori invalid combinations: |
A + B2 → ‡ (u in A) A2 + B → ‡ (u in B) | |
Other layer-combinations: |
B21: q(-x) 3 xo 3 ow &#zx → †) A2B2: wx 3 (-x)(-x) 3 xw &#zx A2B21: w(-x) 3 (-x)o 3 xw &#zx → †) A23B21: w(-x) 3 oo 3 (-x)w &#zx → †) | |
Stott expansion: (derived potential CRFs & beyond) |
1:-: wx 3 xx 3 oq &#zx → °) (asks for non-regular hexagons: wx .. oq &#zx) = non-Johnsonian (patex sirco) |
(-2):-: qo 3 oo 3 oq &#zx = Wythoffian o3o4x (cube) |
13:-: wx 3 xx 3 xw &#zx = Wythoffian x3x4x (girco) |
1(-2)3:-: wx 3 oo 3 xw &#zx = Wythoffian o3x4x (tic) | |
2:A2B2: wx 3 oo 3 xw &#zx = Wythoffian o3x4x (tic) |
(-1)2:A2B2: qo 3 oo 3 xw &#zx → °) (asks for non-regular hexagons: qo .. xw &#zx) = non-Johnsonian (patex cube) | |
(-1)2(-3):A2B2: qo 3 oo 3 oq &#zx = Wythoffian o3o4x (cube) |
in o2o4o subsymmetry (up) | ||
---|---|---|
Representation: |
wx 2 xx 4 ox &#zx (sirco) | |
All layers & kaleido-facetings per layer: |
A: w 2 x 4 o → A2: w 2 (-x) 4 q B: x 2 x 4 x → B1: (-x) 2 x 4 x → B12: (-x) 2 (-x) 4 w ↳ B13: (-x) 2 w 4 (-x) ↳ B2: x 2 (-x) 4 w → (B21 = B12) ↳ B3: x 2 w 4 (-x) → (B31 = B13) | |
A priori invalid combinations: |
A + B2,B12 → ‡ (u in A) A2 → ‡ (q or w in extremal layer, i.e. A) | |
Other layer-combinations: |
B1: w(-x) 2 xx 4 ox &#zx → †) B3: wx 2 xw 4 o(-x) &#zx B13: w(-x) 2 xw 4 o(-x) &#zx → †) | |
Stott expansion: (derived potential CRFs & beyond) |
(-1):-: qo 2 xx 4 ox &#zx (squobcu, J28) |
(-2):-: wx 2 oo 4 ox &#zx (esquidpy, J15) |
(-1)(-2):-: qo 2 oo 4 ox &#zx = Wythoffian x3o4o (oct) |
3:B3: wx 2 xw 4 xo &#zx = Wythoffian o3x4x (tic) | |
(-1)3:B3: qo 2 xw 4 xo &#zx → °) (asks for non-regular hexagons: qo 2 xw &#zx) = non-Johnsonian (pactic) |
(-2)3:B3: wx 2 oq 4 xo &#zx → °) (asks for non-regular hexagons: wx 2 oq &#zx) = non-Johnsonian (pexco) | |
(-1)(-2)3:B3: qo 2 oq 4 xo &#zx = Wythoffian o3x4o (co) | ||
in . o4o subsymmetry (up) | ||
Representation: |
xxxx 4 oxxo &#xt (sirco) related: xxx. 4 oxx. &#xt (escu, J19) related: xx.. 4 ox.. &#x (squacu, J4) related: .xx. 4 .xx. &#x (op) | |
additional, not prismatically symmetric combinations of formers: |
none, because A2 was ruled out already, and the possible combinations B1 + B3, B1 + B13, and B3 + B13 within the 2 medial layers B each would ask for u-edges there → ‡) |
in . o3o subsymmetry (up) | |
---|---|
Representation: |
xxwoqo 3 oqowxx &#xt (sirco) |
All layers & kaleido-facetings per layer: |
A: x 3 o → A1: (-x) 3 x → A12: o 3 (-x) B: x 3 q → B1: (-x) 3 w C: w 3 o D: o 3 w E: q 3 x → E2: w 3 (-x) F: o 3 x → F2: x 3 (-x) → F21: (-x) 3 o |
A priori invalid combinations: |
A + B1,F21 → ‡ (u in A) A1 + B,E2,F2 → ‡ (u in A) A12 + E,F → ‡ (u in A) B + F21 → ‡ (u in F) B1 + F2 → ‡ (u in F) E + F2 → ‡ (u in F) E2 + F → ‡ (u in F) |
Other layer-combinations: |
E2F2 xxwowx 3 oqow(-x)(-x) &#xt A1B1F21 (-x)(-x)woq(-x) 3 xwowxo &#xt → †) A12B1E2F21 o(-x)wow(-x) 3 (-x)wow(-x)o &#xt → †) |
Stott expansion: (derived potential CRFs & beyond) |
1:E2F2: xxwowx 3 xwxQoo &#xt → °) (asks for non-unit edges DC, DE, DF) related: xxw.wx 3 xwx.oo &#xt → °) (asks for non-regular hexagons: ... xwx &#xt) |
in o3o3o subsymmetry (up) | ||
---|---|---|
Representation: |
x3o3x (co) | |
All layers & kaleido-facetings per layer: |
A: x3o3x → A1: (-x)3 x 3 x → A12: o 3(-x)3 u ↳ A13: (-x)3 u 3(-x) ↳ A3: x 3 x 3(-x) → (A31 = A13) ↳ (A32 = A23) | |
A priori invalid combinations: |
A12, A13 → ‡ (u in A) | |
Stott expansion: (derived potential CRFs) |
(-1):-: o3o3x = Wythoffian (tet) |
2:-: x3x3x = Wythoffian (toe) |
(-1)2:-: o3x3x = Wythoffian (tut) |
(-1)2(-3):-: o3x3o = Wythoffian (oct) | |
1:A1: o3x3x = Wythoffian (tut) |
1(-2):A1: o3o3x = Wythoffian (tet) | |
1(-3):A1: o3x3o = Wythoffian (oct) |
in o2o4o subsymmetry (up) | ||
---|---|---|
Representation: |
qo 2 xo 4 oq &#zx (co) | |
All layers & kaleido-facetings per layer: |
A: q2x4o → A2: q 2(-x)4 q B: o2o4q | |
A priori invalid combinations: |
A2 → ‡ (q in A) | |
Stott expansion: (derived potential CRFs & beyond) |
1:-: wx 2 xo 4 oq &#zx → °) (asks for non-regular hexagons: wx .. oq &#zx) = non-Johnsonian (pexco) |
3:-: qo 2 xo 4 xw &#zx → °) (asks for non-regular hexagons: qo .. xw &#zx) = non-Johnsonian (pactic) |
13:-: wx 2 xo 4 xw &#zx = Wythoffian o3x4x (tic) | ||
in . o4o subsymmetry (up) | ||
Representation: |
xox 4 oqo &#xt (co) | |
additional, not prismatically symmetric combinations of formers: |
none, because A2 was disallowed and thus no independent changes in extremal layers A remain possible. |
in o2o2o subsymmetry (up) | ||
---|---|---|
Representation: |
qoq 2 qqo 2 oqq &#zx (co) | |
All layers & kaleido-facetings per layer: |
A: q2q2o B: o2q2q C: q2o2q (As this representation does not show up (true / x-) edges within the layers, those thus cannot be inverted either. Therefore at most pure partial Stott expansions wrt. this subsymmetry remain possible.) | |
Stott expansion: (derived potential CRFs) |
1:-: wxw 2 qqo 2 oqq &#zx → °) (asks for non-regular hexagons: wx .. oq &#zx) = non-Johnsonian (pexco) |
12:-: wxw 2 wwx 2 oqq &#zx → °) (asks for non-regular hexagons: wx .. oq &#zx) = non-Johnsonian (pactic) |
123:-: wxw 2 wwx 2 xww &#zx = Wythoffian o3x4x (tic) |
in . o3o subsymmetry (up) | |
---|---|
Representation: |
xxo 3 oxx &#xt (co) |
All layers & kaleido-facetings per layer: |
A: x3o → A1: (-x)3x → A12: o3(-x) B: x3x → B1: (-x)3u ↳ B2: u3(-x) C: o3x → C2: x3(-x) → C21: (-x)3o |
A priori invalid combinations: |
A + B1,C21 → ‡ (u in A) A1 + B2,C2 → ‡ (u in A) A12 + B,C → ‡ (u in A) B + C2,C21 → ‡ (u in B) B1 + C2 → ‡ (u in C) B2 + C → ‡ (u in C) |
Other layer-combinations: |
C2 xxx 3 ox(-x) &#xt → †) B2C2 xux 3 o(-x)(-x) &#xt A1C21 (-x)x(-x) 3 xxo &#xt → †) A1B1C21 (-x)(-x)(-x) 3 xuo &#xt → †) A12B1C21 o(-x)(-x) 3 (-x)uo &#xt → †) |
Stott expansion: (derived potential CRFs) |
2:AB2C2: xux 3 xoo &#xt = Wythoffian o3x3x (tut) |
Obviously here at most those subsymmetries can be applied, which do respect the possibilities of the base polyhedron, i.e. of the icosahedron (cf. above). As it turns out, all three types become positively applicable.
in . o2o2o subsymmetry (up) | ||
---|---|---|
Representation: |
xof 2 fxo 2 ofx &#zx || o2o2o (ikepy) = xofox 2 ofxfo &#xt || o2o |
© |
All layers & kaleido-facetings per layer: |
A: x 2 f 2 o → A1: (-x) 2 f 2 o B: o 2 x 2 f → B2: o 2 (-x) 2 f C: f 2 o 2 x → C3: f 2 o 2 (-x) D: o 2 o 2 o | |
A priori invalid combinations: |
none | |
Other layer-combinations: |
A1: (-x)of 2 fxo 2 ofx &#zx || o2o2o A1B2: (-x)of 2 f(-x)o 2 ofx &#zx || o2o2o → †) A1B2C3: (-x)of 2 f(-x)o 2 of(-x) &#zx || o2o2o → †) | |
Stott expansion: (derived potential CRFs) |
oxF 2 fxo 2 ofx &#zx || x2o2o = oxFxo 2 ofxfo &#xt || x2o = bilbiro || line → CRF with cell list: 1 bilbiro (J91) 4 peppies (J2) 4 squippies (J1) 4 tets 2 trips |
in . . o3o subsymmetry (up) | ||
---|---|---|
Representation: |
xofo 3 ofox &#xt || o3o (ikepy) |
© |
All layers & kaleido-facetings per layer: |
A: x 3 o → A1: (-x) 3 x B: o 3 f C: f 3 o D: o 3 x → D2: x 3 (-x) E: o 3 o | |
A priori invalid combinations: |
A1 + D2 → ‡) (u in A, u in D) | |
Other layer-combinations: |
A1: (-x)ofo 3 xfox &#xt || o3o
| |
Stott expansion: (derived potential CRFs) |
oxFx 3 xfox &#xt || x3o = thawro || {3} → CRF with cell list: 1 oct 3 peppies (J2) 3 squippies (J1) 9 tets 1 thawro (J92) 1 tricu (J3) 3 trips |
in . . o5o subsymmetry (up) | ||
---|---|---|
Representation: |
oxoo 5 ooxo &#xt || o5o (ikepy) |
© |
All layers & kaleido-facetings per layer: |
A: o 5 o B: x 5 o → B1: (-x) 5 f C: o 5 x → C2: f 5 (-x) D: o 5 o E: o 5 o | |
A priori invalid combinations: |
none | |
Other layer-combinations: |
B1: o(-x)oo 5 ofxo &#xt || o5o B1C2: o(-x)fo 5 of(-x)o &#xt || o5o → †) | |
Stott expansion: (derived potential CRFs) |
xoxx 5 ofxo &#xt || x5o = pocuro || {5} → CRF with cell list: 5 peppies (J2) 2 pips 1 pocuro (J32) 10 squippies (J1) 5 tets 5 trips related: xox. 5 ofx. &#xt || x5o = pero || {5} → CRF (segmentochoron) with cell list: 1 pecu (J5) 5 peppies (J2) 1 pero (J6) 1 pip 10 squippies (J1) related: ..xx 5 ..xo &#x || x5o = pecu || {5} → CRF (segmentochoron) with cell list: 2 pecu (J5) 1 pip 5 tets 5 trips |
in o2o3o5o subsymmetry (up) | ||
---|---|---|
Representation: |
VFfxo 2 oxofo 3 oooox 5 ooxoo &#zx = oxofofoxo 3 ooooxoooo 5 ooxoooxoo &#xt (ex) | |
All layers & kaleido-facetings per layer: |
A: V2o3o5o B: F2x3o5o → B2: F 2(-x)3 x 5 o → B23: F 2 o 3(-x)5 f C: f2o3o5x → C4: f 2 o 3 f 5(-x) D: x2f3o5o → D1: (-x)2 f 3 o 5 o E: o2o3x5o → E3: o 2 x 3(-x)5 f → E32: o 2(-x)3 o 5 f | |
A priori invalid combinations: |
when component 1 (o2.3.5.) remains unchanged (no D1): B2 + E3 → ‡) (u in B, u in E) E32 + B → ‡) (u in B) B23 + E → ‡) (u in E) when component 2 (.2o3o5o) remains unchanged (neither B2, B23, C4, E3, E32): none As changes in (o2.3.5.) do not affect (.2o3o5o) and vice versa, the above exclusions remain valid too, when D1 is activ. | |
Other layer-combinations: |
D1: VFf(-x)o 2 oxofo 3 oooox 5 ooxoo &#zx B2: VFfxo 2 o(-x)ofo 3 oxoox 5 ooxoo &#zx → †) B2E32: VFfxo 2 o(-x)of(-x) 3 oxooo 5 ooxof &#zx E3: VFfxo 2 oxofx 3 oooo(-x) 5 ooxof &#zx B23E3: VFfxo 2 ooofx 3 o(-x)oo(-x) 5 ofxof &#zx C4: VFfxo 2 oxofo 3 oofox 5 oo(-x)oo &#zx B2D1: VFf(-x)o 2 o(-x)ofo 3 oxoox 5 ooxoo &#zx B2D1E32: VFf(-x)o 2 o(-x)of(-x) 3 oxooo 5 ooxof &#zx → †) D1E3: VFf(-x)o 2 oxofx 3 oooo(-x) 5 ooxof &#zx B23D1E3: VFf(-x)o 2 ooofx 3 o(-x)oo(-x) 5 ofxof &#zx C4D1: VFf(-x)o 2 oxofo 3 oofox 5 oo(-x)oo &#zx B23E32: VFfxo 2 ooof(-x) 3 o(-x)ooo 5 ofxof &#zx → †) B2C4: VFfxo 2 o(-x)ofo 3 oxfox 5 oo(-x)oo &#zx B2C4E32: VFfxo 2 o(-x)of(-x) 3 oxfoo 5 oo(-x)of &#zx → †) C4E3: VFfxo 2 oxofx 3 oofo(-x) 5 oo(-x)of &#zx B23D1E32: VFf(-x)o 2 ooof(-x) 3 o(-x)ooo 5 ofxof &#zx → †) B2C4D1: VFf(-x)o 2 o(-x)ofo 3 oxfox 5 oo(-x)oo &#zx B2C4D1E32: VFf(-x)o 2 o(-x)of(-x) 3 oxfoo 5 oo(-x)of &#zx → †) C4D1E3: VFf(-x)o 2 oxofx 3 oofo(-x) 5 oo(-x)of &#zx → †) B23C4D1E3: VFf(-x)o 2 ooofx 3 o(-x)fo(-x) 5 of(-x)of &#zx → †) B23C4E32: VFfxo 2 ooof(-x) 3 o(-x)foo 5 of(-x)of &#zx → †) B23C4D1E32: VFf(-x)o 2 ooof(-x) 3 o(-x)foo 5 of(-x)of &#zx → †) | |
Stott expansion: (derived potential CRFs) |
1:D1: BAFox 2 oxofo 3 oooox 5 ooxoo &#zx = oxoofooxo 3 oooxoxooo 5 ooxoooxoo &#xt (telex) → CRF with cell list: 24 ikes 60 squippies (J1) 180 tets 20 trips related: ..Fox 2 ..ofo 3 ..oox 5 ..xoo &#zx = ..oofoo.. 3 ..oxoxo.. 5 ..xooox.. &#xt → CRF with cell list: 2 does 24 gyepips (J11) 60 squippies (J1) 40 tets 20 trips related: ...ox 2 ...fo 3 ...ox 5 ...oo &#zx = ...ofo... 3 ...xox... 5 ...ooo... &#xt (twau iddip) → CRF with cell list: 2 ids 24 peppies (J2) 60 squippies (J1) 20 trips |
2:B2E32: VFfxo 2 xoxFo 3 oxooo 5 ooxof &#zx = xoxFoFxox 3 oxoooooxo 5 ooxofoxoo &#xt → CRF with cell list: 30 bilbiroes (J91) 26 ikes 80 octs 60 squippies (J1) 40 tets related: ..fxo 2 ..xFo 3 ..ooo 5 ..xof &#zx = ..xFoFx.. 3 ..ooooo.. 5 ..xofox.. &#xt → CRF with cell list: 30 bilbiroes (J91) 24 peppies (J2) 2 srids 40 tets |
3:E3: VFfxo 2 oxofx 3 xxxxo 5 ooxof &#zx = oxofxfoxo 3 xxxxoxxxx 5 ooxofoxoo &#xt → CRF with cell list: 2 ids 30 ikes 40 octs 60 pips 180 squippies (J1) 180 tets 80 tricues (J3) 120 trips related: ..fxo 2 ..ofx 3 ..xxo 5 ..xof &#zx = ..ofxfo.. 3 ..xxoxx.. 5 ..xofox.. &#xt → CRF with cell list: 30 ikes 40 octs 24 pecues (J5) 12 pips 180 squippies (J1) 2 tids related: ..o.xfo.. 3 ..x.oxx.. 5 ..x.fox.. &#xt → CRF with cell list: 30 mibdies (J62) 40 octs 12 pecues (J5) 12 peroes (J6) 60 squippies (J1) 2 tids |
3:B23E3: VFfxo 2 ooofx 3 xoxxo 5 ofxof &#zx = ooofxfooo 3 xoxxoxxox 5 ofxofoxfo &#xt → CRF with cell list: 2 ids 40 ikes 40 octs 12 pips 24 pocuroes (J32) 180 squippies (J1) 80 tets related: ..fxo 2 ..ofx 3 ..xxo 5 ..xof &#zx = ..ofxfo.. 3 ..xxoxx.. 5 ..xofox.. &#xt → CRF with cell list: 30 ikes 40 octs 24 pecues (J5) 12 pips 180 squippies (J1) 2 tids related: ..o.xfo.. 3 ..x.oxx.. 5 ..x.fox.. &#xt → CRF with cell list: 30 mibdies (J62) 40 octs 12 pecues (J5) 12 peroes (J6) 60 squippies (J1) 2 tids | |
4:C4: VFfxo 2 oxofo 3 oofox 5 xxoxx &#zx = oxofofoxo 3 oofoxofoo 5 xxoxxxoxx &#xt → CRF with cell list: 2 does 40 ikes 60 pips 300 squippies (J1) 100 tets 120 trips related: .Ffxo 2 .xofo 3 .ofox 5 .xoxx &#zx = .xofofox. 3 .ofoxofo. 5 .xoxxxox. &#xt → CRF with cell list: 40 ikes 36 pips 300 squippies (J1) 2 srids 60 tets 60 trips related: .F.xo 2 .x.fo 3 .o.ox 5 .x.xx &#zx = .x.fof.x. 3 .o.oxo.o. 5 .x.xxx.x. &#xt → CRF with cell list: 96 pips 2 srids 40 teddies (J63) 60 tets 60 trips |
12:B2D1: BAFox 2 xoxFx 3 oxoox 5 ooxoo &#zx = xoxxFxxox 3 oxoxoxoxo 5 ooxoooxoo &#xt → CRF with cell list: 48 gyepips (J11) 20 hips 2 ikes 80 octs 120 squippies (J1) 40 tricues (J3) 60 trips related: ...ox 2 ...Fx 3 ...ox 5 ...oo &#zx = ...xFx... 3 ...xox... 5 ...ooo... &#xt (twau tipe) → CRF with cell list: 20 hips 24 peppies (J2) 60 squippies (J1) 2 ties | |
13:D1E3: BAFox 2 oxofx 3 xxxxo 5 ooxof &#zx = oxoxfxoxo 3 xxxoxoxxx 5 ooxfofxoo &#xt → CRF with cell list: 30 bilbiroes (J91) 2 ids 40 octs 24 pips 24 pocuroes (J32) 120 tets 80 tricues (J3) 20 trips related: ..Fox 2 ..ofx 3 ..xxo 5 ..xof &#zx = ..oxfxo.. 3 ..xoxox.. 5 ..xfofx.. &#xt → CRF with cell list: 30 bilbiroes (J91) 40 octs 24 peroes (J6) 2 tids 60 tets 20 trips |
13:B23D1E3: BAFox 2 ooofx 3 xoxxo 5 ofxof &#zx = oooxfxooo 3 xoxoxoxox 5 ofxfofxfo &#xt → CRF with cell list: 30 bilbiroes (J91) 2 ids 40 octs 48 peroes (J6) 140 tets 20 trips related: ..Fox 2 ..ofx 3 ..xxo 5 ..xof &#zx = ..oxfxo.. 3 ..xoxox.. 5 ..xfofx.. &#xt → CRF with cell list: 30 bilbiroes (J91) 40 octs 24 peroes (J6) 2 tids 60 tets 20 trips | |
14:C4D1: BAFox 2 oxofo 3 oofox 5 xxoxx &#zx = oxoofooxo 3 oofxoxfoo 5 xxoxxxoxx &#xt → CRF with cell list: 2 does 24 pips 24 pocuroes (J32) 120 squippies (J1) 40 teddies (J63) 40 tets 140 trips related: .AFox 2 .xofo 3 .ofox 5 .xoxx &#zx = .xoofoox. 3 .ofxoxfo. 5 .xoxxxox. &#xt → CRF with cell list: 24 pocuroes (J32) 120 squippies (J1) 2 srids 40 teddies (J63) 80 trips related: .xoo..... 3 .ofx..... 5 .xox..... &#xt → CRF with cell list: 12 peroes (J6) 30 squippies (J1) 1 srid 20 teddies (J63) 1 tid related: ...ox 2 ...fo 3 ...ox 5 ...xx &#zx = ...ofo... 3 ...xox... 5 ...xxx... &#xt (twau tiddip) → CRF with cell list: 24 pecues (J5) 60 squippies (J1) 2 tids 80 trips |
24:B2C4: VFfxo 2 xoxFx 3 oxfox 5 xxoxx &#zx = xoxFxFxox 3 oxfoxofxo 5 xxoxxxoxx &#xt → CRF with cell list: 40 octs 12 pips 24 pocuroes (J32) 120 squippies (J1) 2 srids 120 tets 40 thawroes (J92) 180 trips related: .Ffxo 2 .oxFx 3 .xfox 5 .xoxx &#zx = .oxFxFxo. 3 .xfoxofx. 5 .xoxxxox. &#xt → CRF with cell list: 24 peroes (J6) 12 pips 120 squippies (J1) 120 tets 40 thawroes (J92) 2 tids 120 trips | |
34:C4E3: VFfxo 2 oxofx 3 xxFxo 5 xxoxF &#zx = oxofxfoxo 3 xxFxoxFxx 5 xxoxFxoxx &#xt → CRF with cell list: 30 bilbiroes (J91) 60 dips 240 squippies (J1) 40 thawroes (J92) 2 tids 40 tricues (J3) 60 trips related: .Ffxo 2 .xofx 3 .xFxo 5 .xoxF &#zx = .xofxfox. 3 .xFxoxFx. 5 .xoxFxox. &#xt → CRF with cell list: 30 bilbiroes (J91) 36 dips 2 grids 240 squippies (J1) 40 thawroes (J92) |
124:B2C4D1: BAFox 2 xoxFx 3 oxfox 5 xxoxx &#zx → ‡) (f in C) | |
in . o3o5o subsymmetry (up) | ||
additional, not prismatically symmetric combinations of formers: |
3:(B23)E3: oxo|fxf|ooo 3 xxx|xox|xox 5 oox|ofo|xfo &#xt → CRF with cell list: 2 ids 30 ikes 40 octs 36 pips 12 pocuroes (J32) 180 squippies (J1) 130 tets 40 tricues (J3) 60 trips |
13:(B23)D1E3: oxo|xfx|ooo 3 xxx|oxo|xox 5 oox|fof|xfo &#xt → CRF with cell list: 30 bilbiroes (J91) 2 ids 40 octs 24 peroes (J6) 12 pips 12 pocuroes (J32) 130 tets 40 tricues (J3) 20 trips |
using here node marks / (pseudo) edge lengths: F=f+x, V=F+v=2f, A=F+x=f+2x, B=V+x=2f+x |
in o3o3o3o subsymmetry (up) | |||
---|---|---|---|
Representation: |
xffoo 3 oxoof 3 fooxo 3 ooffx &#zx (ex) | ||
All layers & kaleido-facetings per layer: |
A: x3o3f3o → A1: (-x)3 x 3 f 3 o → A12: o 3(-x)3 F 3 o B: f3x3o3o → B2: F 3(-x)3 x 3 o → B23: F 3 o 3(-x)3 x → B234: F 3 o 3 o 3(-x) C: f3o3o3f D: o3o3x3f → D3: o 3 x 3(-x)3 F → D32: x 3(-x)3 o 3 F → D321: (-x)3 o 3 o 3 F E: o3f3o3x → E4: o 3 f 3 x 3(-x) → E43: o 3 F 3(-x)3 o | ||
A priori invalid combinations: |
none | ||
Other layer-combinations: |
A1: (-x)ffoo 3 xxoof 3 fooxo 3 ooffx &#zx D321: xff(-x)o 3 oxoof 3 foooo 3 oofFx &#zx → †) A1D321: (-x)ff(-x)o 3 xxoof 3 foooo 3 oofFx &#zx → †) A12: offoo 3 (-x)xoof 3 Fooxo 3 ooffx &#zx B2: xFfoo 3 o(-x)oof 3 fxoxo 3 ooffx &#zx D32: xffxo 3 oxo(-x)f 3 foooo 3 oofFx &#zx A12B2: oFfoo 3 (-x)(-x)oof 3 Fxoxo 3 ooffx &#zx B2D32: xFfxo 3 o(-x)o(-x)f 3 fxooo 3 oofFx &#zx A12D32: offxo 3 (-x)xo(-x)f 3 Foooo 3 oofFx &#zx → †) A12B2D32: oFfxo 3 (-x)(-x)o(-x)f 3 Fxooo 3 oofFx &#zx → †) A1B2: (-x)Ffoo 3 x(-x)oof 3 fxoxo 3 ooffx &#zx A1D32: (-x)ffxo 3 xxo(-x)f 3 foooo 3 oofFx &#zx B2D321: xFf(-x)o 3 o(-x)oof 3 fxooo 3 oofFx &#zx A12D321: off(-x)o 3 (-x)xoof 3 Foooo 3 oofFx &#zx → †) A1B2D32: (-x)Ffxo 3 x(-x)o(-x)f 3 fxooo 3 oofFx &#zx A1B2D321: (-x)Ff(-x)o 3 x(-x)oof 3 fxooo 3 oofFx &#zx → †) A12B2D321: oFf(-x)o 3 (-x)(-x)oof 3 Fxooo 3 oofFx &#zx → †) A1D3: (-x)ffoo 3 xxoxf 3 foo(-x)o 3 oofFx &#zx A1B23: (-x)Ffoo 3 xooof 3 f(-x)oxo 3 oxffx &#zx A1E43: (-x)ffoo 3 xxooF 3 foox(-x) 3 ooffo &#zx B23D321: xFf(-x)o 3 oooof 3 f(-x)ooo 3 oxfFx &#zx → †) D321E43: xff(-x)o 3 oxooF 3 fooo(-x) 3 oofFo &#zx → †) A1B23D3: (-x)Ffoo 3 xooxf 3 f(-x)o(-x)o 3 oxfFx &#zx A1D3E43: (-x)ffoo 3 xxoxF 3 foo(-x)(-x) 3 oofFo &#zx → †) A1B23D321: (-x)Ff(-x)o 3 xooof 3 f(-x)ooo 3 oxfFx &#zx → †) A1B23E43: (-x)Ffoo 3 xoooF 3 f(-x)ox(-x) 3 oxffo &#zx → †) A1D321E43: (-x)ff(-x)o 3 xxooF 3 fooo(-x) 3 oofFo &#zx → †) B23D321E43: xFf(-x)o 3 ooooF 3 f(-x)oo(-x) 3 oxfFo &#zx → †) A1B23D3E43: (-x)Ffoo 3 xooxF 3 f(-x)o(-x)(-x) 3 oxfFo &#zx → †) A1B23D321E43: (-x)Ff(-x)o 3 xoooF 3 f(-x)oo(-x) 3 oxfFo &#zx → †) A1E4: (-x)ffoo 3 xxoof 3 fooxx 3 ooff(-x) &#zx A1B234: (-x)Ffoo 3 xooof 3 fooxo 3 o(-x)ffx &#zx → †) B234D321: xFf(-x)o 3 oooof 3 foooo 3 o(-x)fFx &#zx → †) A1B234D321: (-x)Ff(-x)o 3 xooof 3 foooo 3 o(-x)fFx &#zx → †) A1B234E4: (-x)Ffoo 3 xooof 3 fooxx 3 o(-x)ff(-x) &#zx → †) A1B234D321E4: (-x)Ff(-x)o 3 xooof 3 fooox 3 o(-x)fF(-x) &#zx → †) B2D3: xFfoo 3 o(-x)oxf 3 fxo(-x)o 3 oofFx &#zx A12D3: offoo 3 (-x)xoxf 3 Foo(-x)o 3 oofFx &#zx → †) A12B23: oFfoo 3 (-x)ooof 3 F(-x)oxo 3 oxffx &#zx A12E43: offoo 3 (-x)xooF 3 Foox(-x) 3 ooffo &#zx B23D32: xFfxo 3 ooo(-x)f 3 f(-x)ooo 3 oxfFx &#zx A12B2D3: oFfoo 3 (-x)(-x)oxf 3 Fxo(-x)o 3 oofFx &#zx → †) A12B23D3: oFfoo 3 (-x)ooxf 3 F(-x)o(-x)o 3 oxfFx &#zx → †) A12B2E43: oFfoo 3 (-x)(-x)ooF 3 Fxox(-x) 3 ooffo &#zx → †) A12B23D32: oFfxo 3 (-x)oo(-x)f 3 F(-x)ooo 3 oxfFx &#zx → †) A12B2E43: oFfoo 3 (-x)(-x)ooF 3 Fxox(-x) 3 ooffo &#zx → †) A12B23E43: oFfoo 3 (-x)oooF 3 F(-x)ox(-x) 3 oxffo &#zx → †) A12B2D3E43: oFfoo 3 (-x)(-x)oxF 3 Fxo(-x)(-x) 3 oofFo &#zx → †) A12B23D3E43: oFfoo 3 (-x)ooxF 3 F(-x)o(-x)(-x) 3 oxfFo &#zx → †) A12B23D32E43: oFfxo 3 (-x)oo(-x)F 3 F(-x)oo(-x) 3 oxfFo &#zx → †) A1B2D3: (-x)Ffoo 3 x(-x)oxf 3 fxo(-x)o 3 oofFx &#zx A1B23D32: (-x)Ffxo 3 xoo(-x)f 3 f(-x)ooo 3 oxfFx &#zx A1B2E43: (-x)Ffoo 3 x(-x)ooF 3 fxox(-x) 3 ooffo &#zx → †) A1D32E43: (-x)ffxo 3 xxo(-x)F 3 fooo(-x) 3 oofFo &#zx → †) A12B23D321: oFf(-x)o 3 (-x)ooof 3 F(-x)ooo 3 oxfFx &#zx → †) A12D321E43: off(-x)o 3 (-x)xooF 3 Fooo(-x) 3 oofFo &#zx → †) B2D321E43: xFf(-x)o 3 o(-x)ooF 3 fxoo(-x) 3 oofFo &#zx → †) A1B2D3E43: (-x)Ffoo 3 x(-x)oxF 3 fxo(-x)(-x) 3 oofFo &#zx → †) A1B2D32E43: (-x)Ffxo 3 x(-x)o(-x)F 3 fxoo(-x) 3 oofFo &#zx → †) A1B2D321E43: (-x)Ff(-x)o 3 x(-x)ooF 3 fxoo(-x) 3 oofFo &#zx → †) A1B23D32E43: (-x)Ffxo 3 xoo(-x)F 3 f(-x)oo(-x) 3 oxfFo &#zx → †) A12B2D321E43: oFf(-x)o 3 (-x)(-x)ooF 3 Fxoo(-x) 3 oofFo &#zx → †) A12B23D321E43: oFf(-x)o 3 (-x)oooF 3 F(-x)oo(-x) 3 oxfFo &#zx → †) A1B2E4: (-x)Ffoo 3 x(-x)oof 3 fxoxx 3 ooff(-x) &#zx A1B234D32: (-x)Ffxo 3 xoo(-x)f 3 foooo 3 o(-x)fFx &#zx → †) A1D32E4: (-x)ffxo 3 xxo(-x)f 3 fooox 3 oofF(-x) &#zx B2D321E4: xFf(-x)o 3 o(-x)oof 3 fxoox 3 oofF(-x) &#zx → †) A12B234D321: oFf(-x)o 3 (-x)ooof 3 Foooo 3 o(-x)fFx &#zx → †) A12D321E4: off(-x)o 3 (-x)xoof 3 Fooox 3 oofF(-x) &#zx → †) A1B2D32E4: (-x)Ffxo 3 x(-x)o(-x)f 3 fxoox 3 oofF(-x) &#zx → †) A1B2D321E4: (-x)Ff(-x)o 3 x(-x)oof 3 fxoox 3 oofF(-x) &#zx → †) A12B2D321E4 oFf(-x)o 3 (-x)(-x)oof 3 Fxoox 3 oofF(-x) &#zx → †) A1B234D32E4: (-x)Ffxo 3 xoo(-x)f 3 fooox 3 o(-x)fF(-x) &#zx → †) A12B234D321E4: oFf(-x)o 3 (-x)ooof 3 Fooox 3 o(-x)fF(-x) &#zx → †) A1B2D3E4: (-x)Ffoo 3 x(-x)oxf 3 fxo(-x)x 3 oofF(-x) &#zx → †) A1B23D32E4: (-x)Ffxo 3 xoo(-x)f 3 f(-x)oox 3 oxfF(-x) &#zx → †) A1B234D32E43: (-x)Ffxo 3 xoo(-x)F 3 fooo(-x) 3 o(-x)fFo &#zx → †) A12B234D321E43: oFf(-x)o 3 (-x)oooF 3 Fooo(-x) 3 o(-x)fFo &#zx → †) | ||
Stott expansion: (derived potential CRFs) |
1:A1: oFFxx 3 xxoof 3 fooxo 3 ooffx &#zx → CRF with cell list: 5 coes 30 ikes 20 octs 90 squippies (J1) 125 tets 40 trips related: oF.xx 3 xx.of 3 fo.xo 3 oo.fx &#zx → CRF with cell list: 5 coes 30 mibdies (J62) 20 octs 90 squippies (J1) 20 teddies (J63) 25 tets 40 trips |
2:A12: offoo 3 ouxxF 3 Fooxo 3 ooffx &#zx → ‡) (u in B) | |
2:B2: xFfoo 3 xoxxF 3 fxoxo 3 ooffx &#zx → CRF with cell list: 20 ikes 25 octs 60 squippies (J1) 270 tets 40 tricues (J3) 60 trips 5 tuts |
2:D32: xffxo 3 oxo(-x)f 3 foooo 3 oofFx &#zx → ‡) (u in B) | ||
2:A12B2: oFfoo 3 ooxxF 3 Fxoxo 3 ooffx &#zx → CRF with cell list: 30 bilbiroes (J91) 25 octs 20 teddies (J63) 80 tets 20 tricues (J3) 5 tuts |
12:A12B2: xAFxx 3 ooxxF 3 Fxoxo 3 ooffx &#zx → CRF with cell list: 30 bilbiroes (J91) 25 octs 30 pips 20 teddies (J63) 60 tets 5 toes 40 tricues (J3) 40 trips | ||
2:B2D32: xFfxo 3 xoxoF 3 fxooo 3 oofFx &#zx → CRF with cell list: 20 ikes 25 octs 60 squippies (J1) 55 tets 20 thawroes (J92) |
12:A1B2: oAFxx 3 uoxxF 3 fxoxo 3 ooffx &#zx → ‡) (u in A) | ||
12:A1D32: oFFux 3 uuxoF 3 foooo 3 oofFx &#zx → ‡) (u in A, u in B, u in D) |
12: B2D321: uAFox 3 xoxxF 3 fxooo 3 oofFx &#zx → ‡) (u in A) | ||
12:A1B2D32: oAFux 3 uoxoF 3 fxooo 3 oofFx &#zx → ‡) (u in A, u in D) |
13:A1D3: oFFxx 3 xxoxf 3 Fxxox 3 oofFx &#zx → CRF with cell list: 10 hips 20 octs 30 mibdies (J62) 90 squippies (J1) 20 thawroes (J92) 40 tricues (J3) 90 trips 10 tuts | ||
13:A1B23: oAFxx 3 xooof 3 Foxux 3 oxffx &#zx → ‡) (u in D) |
13:A1E43: oFFxx 3 xxooF 3 Fxxuo 3 ooffo &#zx → ‡) (u in D) | ||
13:A1B23D3: oAFxx 3 xooxf 3 Foxox 3 oxfFx &#zx → ‡) (f in C) |
14:A1E4: oFFxx 3 xxoof 3 fooxx 3 xxFFo &#zx → CRF with cell list: 60 bilbiroes (J91) 10 coes 40 octs 70 tets 20 trips | ||
23:A12E43: offoo 3 ouxxA 3 Axxuo 3 ooffo &#zx → ‡) (u in B, u in D) |
23:B2D3: xFfoo 3 xoxuF 3 Fuxox 3 oofFx &#zx → ‡) (u in B, u in D) | ||
23:A12B23: oFfoo 3 oxxxF 3 Aoxux 3 oxffx &#zx → ‡) (u in D) |
23:B23D32: xFfxo 3 xxxoF 3 Foxxx 3 oxfFx &#zx → CRF with cell list: 10 coes 60 pips 30 tets 40 thawroes (J92) 40 tricues (J3) | ||
123:A1B2D3: oAFxx 3 uoxuF 3 Fuxox 3 oofFx &#zx → ‡) (u in A, u in B, u in D) |
123:A1B23D32: oAFux 3 uxxoF 3 Foxxx 3 oxfFx &#zx → ‡) (u in A, u in D) | ||
124:A1B2E4: oAFxx 3 uoxxF 3 fxoxx 3 xxFFo &#zx → ‡) (u in A) |
124:A1D32E4: oFFux 3 uuxoF 3 fooox 3 xxFAo &#zx → ‡) (u in A, u in B, u in D) | ||
using here node marks / (pseudo) edge lengths: F=f+x, V=F+v=2f, A=F+x=f+2x, B=V+x=2f+x |
in o3o3o *b3o subsymmetry (up) | ||
---|---|---|
Representation: |
foxo 3 ooof 3 xfoo *b3 oxfo &#zx (ex) with cyclical layer symmetry: A(134) → B(341) → C(413) → A(134) | |
All layers & kaleido-facetings per layer: |
A: f3o3x *b3o → A1: f 3 x 3(-x)*b3 o → A12: F 3(-x)3 o *b3 x → A123: F 3 o 3 o *b3(-x) B: o3o3f *b3x → B1: o 3 x 3 f *b3(-x) → B12: x 3(-x)3 F *b3 o → B123: (-x)3 o 3 F *b3 o C: x3o3o *b3f → C1: (-x)3 x 3 o *b3 f → C12: o 3(-x)3 x *b3 F → C123: o 3 o 3(-x)*b3 F D: o3f3o *b3o | |
A priori invalid combinations: |
none | |
Other layer-combinations: |
C1: fo(-x)o 3 ooxf 3 xfoo *b3 oxfo &#zx B123: f(-x)xo 3 ooof 3 xFoo *b3 oofo &#zx → †) B123C1: f(-x)(-x)o 3 ooxf 3 xFoo *b3 oofo &#zx → †) A12: Foxo 3 (-x)oof 3 ofoo *b3 xxfo &#zx A12B12: Fxxo 3 (-x)(-x)of 3 oFoo *b3 xofo &#zx → †) A12B12C12: Fxoo 3 (-x)(-x)(-x)f 3 oFxo *b3 xoFo &#zx → †) A12C1: Fo(-x)o 3 (-x)oxf 3 ofoo *b3 xxfo &#zx → †) A12B123: F(-x)xo 3 (-x)oof 3 oFoo *b3 xofo &#zx → †) A12B12C1: Fx(-x)o 3 (-x)(-x)xf 3 oFoo *b3 xofo &#zx → †) A12B123C1: F(-x)(-x)o 3 (-x)oxf 3 oFoo *b3 xofo &#zx → †) A1C1: fo(-x)o 3 xoxf 3 (-x)foo *b3 oxfo &#zx A1B123: f(-x)xo 3 xoof 3 (-x)Foo *b3 oofo &#zx → †) B123C123: f(-x)oo 3 ooof 3 xF(-x)o *b3 ooFo &#zx → †) A1B123C1: f(-x)(-x)o 3 xoxf 3 (-x)Foo *b3 oofo &#zx → †) A1B123C123: f(-x)oo 3 xoof 3 (-x)F(-x)o *b3 ooFo &#zx → †) A1B12C1: fx(-x)o 3 x(-x)xf 3 (-x)Foo *b3 oofo &#zx → †) A1B123C12: f(-x)oo 3 xo(-x)f 3 (-x)Fxo *b3 ooFo &#zx → †) A12B123C123: F(-x)oo 3 (-x)oof 3 oF(-x)o *b3 xoFo &#zx → †) A1B1C1: fo(-x)o 3 xxxf 3 (-x)foo *b3 o(-x)fo &#zx A123B123C123: F(-x)oo 3 ooof 3 oF(-x)o *b3 (-x)oFo &#zx → †) | |
Stott expansion: (derived potential CRFs) |
2:0: foxo 3 xxxF 3 xfoo *b3 oxfo &#zx (icau prissi) → CRF with cell list: 480 tets 96 tricues (J3) 96 trips 24 tuts related: fox. 3 xxx. 3 xfo. *b3 oxf. &#zx (prissi) → CRF with cell list: 24 ikes 96 tricues (J3) 96 trips 24 tuts |
1:C1: Fxox 3 ooxf 3 xfoo *b3 oxfo &#zx (icau pretasto) → CRF with cell list: 8 coes 32 ikes 40 octs 96 squippies (J1) 136 tets 48 trips related: Fxo. 3 oox. 3 xfo. *b3 oxf. &#zx (pretasto) → CRF with cell list: 24 bilbiroes (J91) 8 coes 40 octs 32 teddies (J63) 40 tets |
2:A12: Foxo 3 oxxF 3 ofoo *b3 xxfo &#zx → CRF with cell list: 136 tets 32 thawroes (J92) 32 tricues (J3) 16 tuts |
23:A12: Foxo 3 oxxF 3 xFxx *b3 xxfo &#zx → CRF with cell list: 8 coes 48 pips 96 tets 32 thawroes (J92) 8 toes 32 tricues (J3) 48 trips 8 tuts | |
13:A1C1: Fxox 3 xoxf 3 oFxx *b3 oxfo &#zx → CRF with cell list: 8 coes 40 octs 96 squippies (J1) 32 teddies (J63) 32 thawroes (J92) 96 trips 8 tuts |
134:A1B1C1: Fxox 3 xxxf 3 oFxx *b3 xoFx &#zx → ‡) (f in D) | |
using here node marks / (pseudo) edge lengths: F=f+x |
in o5o2o5o subsymmetry (up) | ||
---|---|---|
Representation: |
xfooxo 5 xofxoo 2 oxofox 5 ooxofx &#zx (ex) with layer symmetry: A(1234),B(1234),C(1234),D(1234),E(1234),F(1234) ↔ A(2143),C(2143),B(2143),E(2143),D(2143),F(2143) and cycle: A(1234),B(1234),C(1234),D(1234),E(1234),F(1234) → F(3421),D(3421),E(3421),C(3421),B(3421),A(3421) → A(2143),C(2143),B(2143),E(2143),D(2143),F(2143) → F(4312),E(4312),D(4312),B(4312),C(4312),A(4312) → A(1234),B(1234),C(1234),D(1234),E(1234),F(1234) | |
All layers & kaleido-facetings per layer: |
A: x5x o5o → A1: (-x)5 F o 5 o or A2: F 5(-x) o 5 o B: f5o x5o → B3: f 5 o (-x)5 f C: o5f o5x → C4: o 5 f f 5(-x) D: o5x f5o → D2: f 5(-x) f 5 o E: x5o o5f → E1: (-x)5 f o 5 f F: o5o x5x → F3: o 5 o (-x)5 F or F4: o 5 o F 5(-x) | |
A priori invalid combinations: |
when component 1 (o5o2.5.) remains unchanged (neither A1, A2, D2, E1): B3 + neither F3 nor F4 → ‡) (u in F) C4 + neither F3 nor F4 → ‡) (u in F) F3 + no B3 → ‡) (u in B) F4 + no C4 → ‡) (u in C) when component 2 (.5.2o5o) remains unchanged (neither B3, C4, F3, F4): E1 + neither A1 nor A2 → ‡) (u in A) D2 + neither A1 nor A2 → ‡) (u in A) A1 + no E1 → ‡) (u in E) A2 + no D2 → ‡) (u in D) As changes in (o5o2.5.) do not affect (.5.2o5o) and vice versa, the above exclusions become valid generally. | |
Other layer-combinations: |
A1E1: (-x)foo(-x)o 5 Fofxfo 2 oxofox 5 ooxofx &#zx A1D2E1: (-x)fof(-x)o 5 Fof(-x)fo 2 oxofox 5 ooxofx &#zx A1B3E1F3: (-x)foo(-x)o 5 Fofxfo 2 o(-x)ofo(-x) 5 ofxofF &#zx A1B3D2E1F3: (-x)fof(-x)o 5 Fof(-x)fo 2 o(-x)ofo(-x) 5 ofxofF &#zx → †) A2B3D2E1F3: Ffof(-x)o 5 (-x)of(-x)fo 2 o(-x)ofo(-x) 5 ofxofF &#zx → †) A1B3C4D2E1F3: (-x)fof(-x)o 5 Fof(-x)fo 2 o(-x)ffo(-x) 5 of(-x)ofF &#zx → †) | |
Stott expansion: (derived potential CRFs) |
-:0: xfooxo 5 xofxoo 2 oxofox 5 ooxofx &#zx → regular (ex itself) with cell list: 600 tets related: xfoo.o 5 xofx.o 2 oxof.x 5 ooxo.x &#zx → CRF with cell list: 25 mibdies (J62) 225 tets related: .foo.o 5 .ofx.o 2 .xof.x 5 .oxo.x &#zx → CRF with cell list: 25 mibdies (J62) 10 paps 75 tets related: .foox. 5 .ofxo. 2 .xofo. 5 .oxof. &#zx → uniform (gap) with cell list: 20 paps 300 tets |
1:A1E1: oFxxox 5 Fofxfo 2 oxofox 5 ooxofx &#zx → CRF with cell list: 10 gyepips (J11) 25 ikes 10 pips 150 squippies (J1) 75 tets 50 trips related: .Fxxox 5 .ofxfo 2 .xofox 5 .oxofx &#zx → CRF with cell list: 10 paps 15 pips 25 ikes 75 tets 50 trips 125 squippies (J1) related: oFxx.x 5 Fofx.o 2 oxof.x 5 ooxo.x &#zx → CRF with cell list: 10 gyepips (J11) 25 mibdies (J62) 35 pips 25 squippies (J1) 75 tets 50 trips related: .Fxx.x 5 .ofx.o 2 .xof.x 5 .oxo.x &#zx → CRF with cell list: 25 mibdies (J62) 10 paps 40 pips 75 tets 50 trips |
12:A1D2E1: oFxFox 5 AxFoFx 2 oxofox 5 ooxofx &#zx → CRF with cell list: 50 bilbiroes (J91) 10 dips 10 gyepips (J11) 5 pips 75 squippies (J1) related: .FxFox 5 .xFoFx 2 .xofox 5 .oxofx &#zx → CRF with cell list: 50 bilbiroes (J91) 10 dips 10 paps 10 pips 50 squippies (J1) |
13:A1B3E1F3: oFxxox 5 Fofxfo 2 xoxFxo 5 ofxofF &#zx → ‡) (f in B) | |
using here node marks / (pseudo) edge lengths: F=f+x, A=F+x=f+2x |
in o3o2o3o subsymmetry (up) | ||
---|---|---|
Representation: |
fFoxffooxo 3 foFfxofxoo 2 oxofofxFof 3 ooxofxfoFf &#zx (ex) with layer symmetry: A(1234),B(1234),C(1234),D(1234),E(1234),F(1234),G(1234),H(1234),I(1234),J(1234) ↔ A(2143),C(2143),B(2143),E(2143),D(2143),G(2143),F(2143),I(2143),H(2143),J(2143) and cycle: A(1234),B(1234),C(1234),D(1234),E(1234),F(1234),G(1234),H(1234),I(1234),J(1234) → J(3421),H(3421),I(3421),G(3421),F(3421),D(3421),E(3421),C(3421),B(3421),A(3421) → A(2143),C(2143),B(2143),E(2143),D(2143),G(2143),F(2143),I(2143),H(2143),J(2143) → J(4312),I(4312),H(4312),F(4312),G(4312),E(4312),D(4312),B(4312),C(4312),A(4312) → A(1234),B(1234),C(1234),D(1234),E(1234),F(1234),G(1234),H(1234),I(1234),J(1234) | |
All layers & kaleido-facetings per layer: |
A: f3f o3o B: F3o x3o → B3: F 3 o (-x)3 x → B34: F 3 o o 3(-x) C: o3F o3x → C4: o 3 F x 3(-x) → C43: o 3 F (-x)3 o D: x3f f3o → D1: (-x)3 F f 3 o E: f3x o3f → E2: F 3(-x) o 3 f F: f3o f3x → F4: f 3 o F 3(-x) G: o3f x3f → G3: o 3 f (-x)3 F H: o3x F3o → H2: x 3(-x) F 3 o → H21: (-x)3 o F 3 o I: x3o o3F → I1: (-x)3 x o 3 F → I12: o 3(-x) o 3 F J: o3o f3f | |
A priori invalid combinations: |
when component 1 (o3o2.3.) remains unchanged (neither D1, E2, H2, H21, I1, I12): B3 + C4 → ‡) (u in B, u in C) B3 + F4 → ‡) (u in B) B3 + no G3 → ‡) (u in G) B34 + neither C4 nor C43 → ‡) (u in C) B34 + no F4 → ‡) (u in F) C4 + no F4 → ‡) (u in F) C4 + G3 → ‡) (u in C) C43 + neither B3 nor B34 → ‡) (u in B) C43 + no G3 → ‡) (u in G) F4 + neither C4 nor C43 → ‡) (u in C) G3 + neither B3 nor B34 → ‡) (u in B) when component 2 (.3.2o3o) remains unchanged (neither B3, B34, C4, C43, F4, G3): D1 + H2 → ‡) (u in H) D1 + neither I1 nor I12 → ‡) (u in I) E2 + neither H2 nor H21 → ‡) (u in H) E2 + I1 → ‡) (u in I) H2 + no E2 → ‡) (u in E) H2 + I1 → ‡) (u in H, u in I) H21 + no D1 → ‡) (u in D) H21 + neither I1 nor I12 → ‡) (u in I) I1 + no D1 → ‡) (u in D) I12 + no E2 → ‡) (u in E) I12 + neither H2 nor H21 → ‡) (u in H) As changes in (o3o2.3.) do not affect (.3.2o3o) and vice versa, the above exclusions become valid generally. | |
Other layer-combinations: |
D1I1: fFo(-x)ffoo(-x)o 3 foFFxofxxo 2 oxofofxFof 3 ooxofxfoFf &#zx D1H21I1: fFo(-x)ffo(-x)(-x)o 3 foFFxofoxo 2 oxofofxFof 3 ooxofxfoFf &#zx D1E2H21I12: fFo(-x)Ffo(-x)oo 3 foFF(-x)ofo(-x)o 2 oxofofxFof 3 ooxofxfoFf &#zx B3D1G3I1: fFo(-x)ffoo(-x)o 3 foFFxofxxo 2 o(-x)ofof(-x)Fof 3 oxxofxFoFf &#zx B3C43D1G3I1: fFo(-x)ffoo(-x)o 3 foFFxofxxo 2 o(-x)(-x)fof(-x)Fof 3 oxoofxFoFf &#zx B3D1G3H21I1: fFo(-x)ffo(-x)(-x)o 3 foFFxofoxo 2 o(-x)ofof(-x)Fof 3 oxxofxFoFf &#zx B3C43D1G3H21I1: fFo(-x)ffo(-x)(-x)o 3 foFFxofoxo 2 o(-x)(-x)fof(-x)Fof 3 oxoofxFoFf &#zx → †) B3D1E2G3H21I12: fFo(-x)Ffo(-x)oo 3 foFF(-x)ofo(-x)o 2 o(-x)ofof(-x)Fof 3 oxxofxFoFf &#zx B3C43D1E2G3H21I12: fFo(-x)Ffo(-x)oo 3 foFF(-x)ofo(-x)o 2 o(-x)(-x)fof(-x)Fof 3 oxoofxFoFf &#zx → †) B34C43D1E2F4G3H21I12: fFo(-x)Ffo(-x)oo 3 foFF(-x)ofo(-x)o 2 oo(-x)foF(-x)Fof 3 o(-x)oof(-x)FoFf &#zx → †) | |
Stott expansion: (derived potential CRFs) |
1:D1I1: FAxoFFxxox 3 foFFxofxxo 2 oxofofxFof 3 ooxofxfoFf &#zx → CRF with cell list: 27 ikes 6 octs 72 squippies (J1) 138 tets 6 tricues (J3) 30 trips related: FAxoFFxxo. 3 foFFxofxx. 2 oxofofxFo. 3 ooxofxfoF. &#zx → CRF with cell list: 18 ikes 9 mibdies (J62) 54 squippies (J1) 84 tets 6 thawroes (J92) 12 trips related: .AxoFFxxo. 3 .oFFxofxx. 2 .xofofxFo. 3 .oxofxfoF. &#zx → CRF with cell list: 18 gyepips (J11) 9 mibdies (J62) 54 squippies (J1) 6 teddies (J63) 54 tets 6 thawroes (J92) 12 trips |
1:D1H21I1: FAxoFFxoox 3 foFFxofoxo 2 oxofofxFof 3 ooxofxfoFf &#zx → CRF with cell list: 9 bilbiroes (J91) 18 gyepips (J11) 9 ikes 54 squippies (J1) 87 tets 12 trips related: .AxoFFxoox 3 .oFFxofoxo 2 .xofofxFof 3 .oxofxfoFf &#zx → CRF with cell list: 9 bilbiroes (J91) 9 ikes 6 octs 18 paps 54 squippies (J1) 6 teddies (J63) 51 tets 12 trips |
12:D1E2H21I12: FAxoAFxoxx 3 FxAAoxFxox 2 oxofofxFof 3 ooxofxfoFf &#zx → CRF with cell list: 18 bilbiroes (J91) 18 pips 54 squippies (J1) 36 teddies (J63) 12 tets 12 tricues (J3) 24 trips |
13:B3D1G3I1: FAxoFFxxox 3 foFFxofxxo 2 xoxFxFoAxF 3 oxxofxFoFf &#zx → CRF with cell list: 27 bilbiroes (J91) 3 hips 12 octs 9 mibdies (J62) 54 squippies (J1) 18 teddies (J63) 36 tets 12 tricues (J3) 30 trips | |
13:B3C43D1G3I1: FAxoFFxxox 3 foFFxofxxo 2 xooFxFoAxF 3 oxoofxFoFf &#zx → †) (dead end at D) |
13:B3D1G3H21I1: FAxoFFxoox 3 foFFxofoxo 2 xoxFxFoAxF 3 oxxofxFoFf &#xz → †) (dead end at D) | |
123:B3D1E2G3H21I12: FAxoAFxoxx 3 FxAAoxFxox 2 xoxFxFoAxF 3 oxxofxFoFf &#zx → †) (dead end at D) |
| |
using here node marks / (pseudo) edge lengths: F=f+x, A=F+x=f+2x |
in . o3o3o subsymmetry (up) | ||
---|---|---|
Representation: |
xoo|fox|Ffo|ofx|ofo 3 oof|oxf|ooo|fxo|foo 3 ofo|xfo|ofF|xof|oox &#xt (ex) | |
All layers & kaleido-facetings per layer: |
A: x3o3o → A1: (-x)3 x 3 o → A12: o 3(-x)3 x → A123: o 3 o 3(-x) B: o3o3f C: o3f3o D: f3o3x → D3: f 3 x 3(-x) → D32: F 3(-x)3 o E: o3x3f → E2: x 3(-x)3 F → E21: (-x)3 o 3 F F: x3f3o → F1: (-x)3 F 3 o G: F3o3o H: f3o3f g: o3o3F f: o3f3x → f3: o 3 F 3(-x) etc. antisymmetrically | |
A priori invalid combinations: |
A1 + D32 → ‡) (u in A) A1 + E2 → ‡) (u in A, u in E) A1 + no F1 → ‡) (u in F) A1 + e2 → ‡) (u in A) A1 + d12 → ‡) (u in A) A1 + neither d1 nor d12 → ‡) (u in d) A1 + a32 → ‡) (u in A, u in a) A12 + D3 → ‡) (u in A, u in D) A12 + d1 → ‡) (u in A, u in d) A12 + neither E2 nor E21 → ‡) (u in E) A12 + f3 → ‡) (u in A) A12 + e23 → ‡) (u in A) A12 + neither e2 nor e23 → ‡) (u in e) A12 + a3 → ‡) (u in A, u in a) A123 + neither D3 nor D32 → ‡) (u in D) A123 + no f3 → ‡) (u in f) A123 + e2 → ‡) (u in e) A123 + neither a3, a32, a321 → ‡) (u in a) D3 + E2 → ‡) (u in D) D3 + no f3 → ‡) (u in f) D3 + e2 → ‡) (u in D, u in e) D3 + d12 → ‡) (u in D) D3 + a32 → ‡) (u in D, u in a) D3 + neither a3, a32, a321 → ‡) (u in a) D32 + neither E2 nor E21 → ‡) (u in E) D32 + neither e2 nor e23 → ‡) (u in e) D32 + d1 → ‡) (u in d) D32 + a3 → ‡) (u in a) E2 + F1 → ‡) (u in E) E2 + neither e2 nor e23 → ‡) (u in e) E2 + d1 → ‡) (u in E, u in d) |
E2 + a3 → ‡) (u in E) E2 + a321 → ‡) (u in E) E21 + neither A1, A12, A123 → ‡) (u in A) E21 + no F1 → ‡) (u in F) E21 + neither d1 nor d12 → ‡) (u in d) E21 + a32 → ‡) (u in a) F1 + neither A1, A12, A123 → ‡) (u in A) F1 + neither d1 nor d12 → ‡) (u in d) F1 + a32 → ‡) (u in a) f3 + neither D3 nor D32 → ‡) (u in D) f3 + e2 → ‡) (u in e) f3 + neither a3, a32, a321 → ‡) (u in a) e2 + neither E2 nor E21 → ‡) (u in E) e2 + d1 → ‡) (u in d) e2 + a3 → ‡) (u in e, u in a) e23 + neither D3 nor D32 → ‡) (u in D) e23 + no f3 → ‡) (u in f) e23 + neither a3, a32, a321 → ‡) (u in a) d1 + neither A1, A12, A123 → ‡) (u in A) d1 + no F1 → ‡) (u in F) d1 + a32 → ‡) (u in d, u in a) d12 + neither E2 nor E21 → ‡) (u in E) d12 + neither e2 nor e23 → ‡) (u in e) d12 + a3 → ‡) (u in a) a3 + neither D3 nor D32 → ‡) (u in D) a3 + no f3 → ‡) (u in f) a32 + neither E2 nor E21 → ‡) (u in E) a32 + neither e2 nor e23 → ‡) (u in e) a321 + neither A1, A12, A123 → ‡) (u in A) a321 + no F1 → ‡) (u in F) a321 + neither d1 nor d12 → ‡) (u in d) |
Other layer-combinations: |
A1F1d1: (-x)oo|fo(-x)|Ffo|of(-x)|ofo 3 xof|oxF|ooo|fxx|foo 3 ofo|xfo|ofF|xof|oox &#xt A1E21F1d1: (-x)oo|f(-x)(-x)|Ffo|of(-x)|ofo 3 xof|ooF|ooo|fxx|foo 3 ofo|xFo|ofF|xof|oox &#xt A1F1d1a321: (-x)oo|fo(-x)|Ffo|of(-x)|of(-x) 3 xof|oxF|ooo|fxx|foo 3 ofo|xfo|ofF|xof|ooo &#xt → †) A1E21F1d1a321: (-x)oo|f(-x)(-x)|Ffo|of(-x)|of(-x) 3 xof|ooF|ooo|fxx|foo 3 ofo|xFo|ofF|xof|ooo &#xt → †) E2e2: xoo|fxx|Ffo|oFx|ofo 3 oof|o(-x)f|ooo|f(-x)o|foo 3 ofo|xFo|ofF|xxf|oox &#xt A12E2e2: ooo|fxx|Ffo|oFx|ofo 3 (-x)of|o(-x)f|ooo|f(-x)o|foo 3 xfo|xFo|ofF|xxf|oox &#xt D32E2e2: xoo|Fxx|Ffo|oFx|ofo 3 oof|(-x)(-x)f|ooo|f(-x)o|foo 3 ofo|oFo|ofF|xxf|oox &#xt A12D32E2e2: ooo|Fxx|Ffo|oFx|ofo 3 (-x)of|(-x)(-x)f|ooo|f(-x)o|foo 3 xfo|oFo|ofF|xxf|oox &#xt → †) (dead end at D) A12E2e2d12: ooo|fxx|Ffo|oFo|ofo 3 (-x)of|o(-x)f|ooo|f(-x)(-x)|foo 3 xfo|xFo|ofF|xxF|oox &#xt A12E2e2a32: ooo|fxx|Ffo|oFx|ofx 3 (-x)of|o(-x)f|ooo|f(-x)o|fo(-x) 3 xfo|xFo|ofF|xxf|ooo &#xt D32E2e2d12: xoo|Fxx|Ffo|oFo|ofo 3 oof|(-x)(-x)f|ooo|f(-x)(-x)|foo 3 ofo|oFo|ofF|xxF|oox &#xt A12D32E2e2d12: ooo|Fxx|Ffo|oFo|ofo 3 (-x)of|(-x)(-x)f|ooo|f(-x)(-x)|foo 3 xfo|oFo|ofF|xxF|oox &#xt → †) (dead end at D) A12D32E2e2a32: ooo|Fxx|Ffo|oFx|ofx 3 (-x)of|(-x)(-x)f|ooo|f(-x)o|fo(-x) 3 xfo|oFo|ofF|xxf|ooo &#xt → †) (dead end at D) A12D32E2e2d12a32: ooo|Fxx|Ffo|oFo|ofx 3 (-x)of|(-x)(-x)f|ooo|f(-x)(-x)|fo(-x) 3 xfo|oFo|ofF|xxF|ooo &#xt → †) (dead end at D) A12E21F1e2d12: ooo|f(-x)(-x)|Ffo|oFo|ofo 3 (-x)of|ooF|ooo|f(-x)(-x)|foo 3 xfo|xFo|ofF|xxF|oox &#xt A12D32E21F1e2d12: ooo|F(-x)(-x)|Ffo|oFo|ofo 3 (-x)of|(-x)oF|ooo|f(-x)(-x)|foo 3 xfo|oFo|ofF|xxF|oox &#xt → †) (dead end at D) A12E21F1e2d12a321: ooo|f(-x)(-x)|Ffo|oFo|of(-x) 3 (-x)of|ooF|ooo|f(-x)(-x)|foo 3 xfo|xFo|ofF|xxF|ooo &#xt → †) A12D32E21F1e2d12a321: ooo|F(-x)(-x)|Ffo|oFo|of(-x) 3 (-x)of|(-x)oF|ooo|f(-x)(-x)|foo 3 xfo|oFo|ofF|xxF|ooo &#xt → †) A1D3F1f3d1a3: (-x)oo|fo(-x)|Ffo|of(-x)|ofo 3 xof|xxF|ooo|Fxx|fox 3 ofo|(-x)fo|ofF|(-x)of|oo(-x) &#xt A1D3F1f3d1a321: (-x)oo|fo(-x)|Ffo|of(-x)|of(-x) 3 xof|xxF|ooo|Fxx|foo 3 ofo|(-x)fo|ofF|(-x)of|ooo &#xt → †) A123D3F1f3d1a321: ooo|fo(-x)|Ffo|of(-x)|of(-x) 3 oof|xxF|ooo|Fxx|foo 3 (-x)fo|(-x)fo|ofF|(-x)of|ooo &#xt → †) A1D3E21F1f3d1a3: (-x)oo|f(-x)(-x)|Ffo|of(-x)|ofo 3 xof|xoF|ooo|Fxx|fox 3 ofo|(-x)Fo|ofF|(-x)of|oo(-x) &#xt A1D3E21F1f3d1a321: (-x)oo|f(-x)(-x)|Ffo|of(-x)|of(-x) 3 xof|xoF|ooo|Fxx|foo 3 ofo|(-x)Fo|ofF|(-x)of|ooo &#xt → †) A123D3E21F1f3d1a321: ooo|f(-x)(-x)|Ffo|of(-x)|of(-x) 3 oof|xoF|ooo|Fxx|foo 3 (-x)fo|(-x)Fo|ofF|(-x)of|ooo &#xt → †) A1D3F1f3e23d1a321: (-x)oo|fo(-x)|Ffo|oF(-x)|of(-x) 3 xof|xxF|ooo|Fox|foo 3 ofo|(-x)fo|ofF|(-x)(-x)f|ooo &#xt → †) A1D3E21F1f3e23d1a3: (-x)oo|f(-x)(-x)|Ffo|oF(-x)|ofo 3 xof|xoF|ooo|Fox|fox 3 ofo|(-x)Fo|ofF|(-x)(-x)f|oo(-x) &#xt A1D3E21F1f3e23d1a321: (-x)oo|f(-x)(-x)|Ffo|oF(-x)|of(-x) 3 xof|xoF|ooo|Fox|foo 3 ofo|(-x)Fo|ofF|(-x)(-x)f|ooo &#xt → †) A123D3E21F1f3e23d1a321: ooo|f(-x)(-x)|Ffo|oF(-x)|of(-x) 3 oof|xoF|ooo|Fox|foo 3 (-x)fo|(-x)Fo|ofF|(-x)(-x)f|ooo &#xt → †) A123D32E21F1f3e23d12a321: ooo|F(-x)(-x)|Ffo|oFo|of(-x) 3 oof|(-x)oF|ooo|Fo(-x)|foo 3 (-x)fo|oFo|ofF|(-x)(-x)F|ooo &#xt → †) | |
Stott expansion: (derived potential CRFs) |
1:A1F1d1: oxxFxoAFxxFoxFx 3 xofoxFooofxxfoo 3 ofoxfoofFxofoox &#xt ... |
1:A1E21F1d1: oxxFooAFxxFoxFx 3 xofooFooofxxfoo 3 ofoxFoofFxofoox &#xt ... |
2:E2e2: xoofxxFfooFxofo 3 xxFxoFxxxFoxFxx 3 ofoxFoofFxxfoox &#xt → CRF with cell list: 24 ikes 16 octs 72 squippies (J1) 198 tets 24 tricues (J3) 48 trips 2 tuts related: xo.fxxFfooFx.fo 3 xx.xoFxxxFox.xx 3 of.xFoofFxxf.ox &#xt → CRF with cell list: 24 gyepips (J11) 12 mibdies (J62) 16 octs 72 squippies (J1) 78 tets 24 tricues (J3) 48 trips 2 tuts |
2:A12E2|e2: ooofxx|Ffo|oFxofo 3 oxFxoF|xxx|FoxFxx 3 xfoxFo|ofF|xxfoox &#xt → CRF with cell list: 24 ikes 16 octs 72 squippies (J1) 155 tets 4 thawroes (J92) 16 tricues (J3) 36 trips 1 tut (asymmetric hemiglomal combination of others) | |
2:D32E2|e2: xooFxx|Ffo|oFxofo 3 xxFooF|xxx|FoxFxx 3 ofooFo|ofF|xxfoox &#xt → CRF with cell list: 12 bilbiroes (J91) 12 ikes 12 mibdies (J62) 16 octs 48 squippies (J1) 122 tets 16 tricues (J3) 24 trips 2 tuts (asymmetric hemiglomal combination of others) |
2:A12E2|e2d12: ooofxx|Ffo|oFoofo 3 oxFxoF|xxx|FooFxx 3 xfoxFo|ofF|xxFoox &#xt → CRF with cell list: 12 bilbiroes (J91) 12 ikes 12 mibdies (J62) 16 octs 48 squippies (J1) 79 tets 4 thawroes (J92) 8 tricues (J3) 12 trips 1 tut (asymmetric hemiglomal combination of others) | |
2:A12E2e2a32: ooofxxFfooFxofx 3 oxFxoFxxxFoxFxo 3 xfoxFoofFxxfooo &#xt → CRF with cell list: 24 ikes 16 octs 72 squippies (J1) 112 tets 8 thawroes (J92) 8 tricues (J3) 24 trips |
2:D32E2e2d12: xooFxxFfooFoofo 3 xxFooFxxxFooFxx 3 ofooFoofFxxFoox &#xt → CRF with cell list: 24 bilbiroes (J91) 24 mibdies (J62) 16 octs 24 squippies (J1) 46 tets 8 tricues (J3) 2 tuts | |
12:A12E21F1e2d12: xxxFooAFxxAxxFx 3 oxFxxAxxxFooFxx 3 xfoxFoofFxxFoox &#xt → CRF with cell list: 24 bilbiroes (J91) 1 co 8 octs 30 pips 18 squippies (J1) 24 teddies (J63) 12 tets 4 thawroes (J92) 1 toe 28 tricues (J3) 24 trips |
13:A1D3F1f3d1a3: oxxFxoAFxxFoxFx 3 xofxxFoooFxxfox 3 xFxoFxxFAoxFxxo &#xt → CRF with cell list: 24 bilbiroes (J91) 16 octs 48 squippies (J1) 24 teddies (J63) 30 tets 8 thawroes (J92) 16 tricues (J3) 48 trips 2 tuts | |
13:A1D3E21F1f3d1a3: oxxFooAFxxFoxFx 3 xofxoFoooFxxfox 3 xFxoAxxFAoxFxxo &#xt ... |
13:A1D3E21F1f3e23d1a3: oxxFooAFxxAoxFx 3 xofxoFoooFoxfox 3 xFxoAxxFAooFxxo &#xt ... | |
using here node marks / (pseudo) edge lengths: F=f+x, A=F+x=f+2x |
in o2o2o2o subsymmetry (up) | ||
---|---|---|
Representation: |
ooo|xxx|fff|FFF|Vooo|f 2 Fxf|oFf|xFo|fxo|oVoo|f 2 xfF|Ffo|Fox|xof|ooVo|f 2 fFx|foF|oxF|ofx|oooV|f &#zx (ex) | |
All layers & kaleido-facetings per layer: |
A: o2F2x2f → A3: o 2 F 2(-x)2 f B: o2x2f2F → B2: o 2(-x)2 f 2 F C: o2f2F2x → C4: o 2 f 2 F 2(-x) D: x2o2F2f → D1: (-x)2 o 2 F 2 f E: x2F2f2o → E1: (-x)2 F 2 f 2 o F: x2f2o2F → F1: (-x)2 f 2 o 2 F G: f2x2F2o → G2: f 2(-x)2 F 2 o H: f2F2o2x → H4: f 2 F 2 o 2(-x) I: f2o2x2F → I3: f 2 o 2(-x)2 F |
J: F2f2x2o → J3: F 2 f 2(-x)2 o K: F2x2o2f → K2: F 2(-x)2 o 2 f L: F2o2f2x → L4: F 2 o 2 f 2(-x) M: V2o2o2o N: o2V2o2o O: o2o2V2o P: o2o2o2V Q: f2f2f2f |
A priori invalid combinations: |
A + I3,J3 A3 + I,J B + G2,K2 B2 + G,K C + H4,L4 C4 + H,L D + E1,F1 D1 + E,F |
E + F1 E1 + F G + K2 G2 + K H + L4 H4 + L I + J3 I3 + J (all giving rise to u edges) |
Other layer-combinations: |
ABCD1E1F1GHIJKL: ooo(-x)(-x)(-x)fffFFFVooof 2 FxfoFfxFofxooVoof 2 xfFFfoFoxxofooVof 2 fFxfoFoxFofxoooVf &#zx ABC4D1E1F1GH4IJKL4: ooo(-x)(-x)(-x)fffFFFVooof 2 FxfoFfxFofxooVoof 2 xfFFfoFoxxofooVof 2 fF(-x)foFo(-x)Fof(-x)oooVf &#zx AB2C4D1E1F1G2H4IJK2L4: ooo(-x)(-x)(-x)fffFFFVooof 2 F(-x)foFf(-x)Fof(-x)ooVoof 2 xfFFfoFoxxofooVof 2 fF(-x)foFo(-x)Fof(-x)oooVf &#zx A3B2C4D1E1F1G2H4I3J3K2L4: ooo(-x)(-x)(-x)fffFFFVooof 2 F(-x)foFf(-x)Fof(-x)ooVoof 2 (-x)fFFfoFo(-x)(-x)ofooVof 2 fF(-x)foFo(-x)Fof(-x)oooVf &#zx → †) | |
Stott expansion: (derived potential CRFs) |
1:ABCD1E1F1GHIJKL: xxxoooFFFAAABxxxF 2 FxfoFfxFofxooVoof 2 xfFFfoFoxxofooVof 2 fFxfoFoxFofxoooVf &#zx (telex) → CRF with cell list: 24 ikes 60 squippies (J1) 180 tets 20 trips (as this is just an axial change, the orthogonal symmetry remains; thus it also can be described as: BAFox 2 oxofo 3 oooox 5 ooxoo &#zx) related: xxxoooFFF.......F 2 FxfoFfxFo.......f 2 xfFFfoFox.......f 2 fFxfoFoxF.......f &#zx → CRF with cell list: 6 bilbiroes (J91) 2 does 24 mibdies (J62) 36 squippies (J1) 16 tets 8 trips | |
14:ABC4D1E1F1GH4IJKL4: xxxoooFFFAAABxxxF 2 FxfoFfxFofxooVoof 2 xfFFfoFoxxofooVof 2 FAoFxAxoAxFoxxxBF &#zx → CRF with cell list: 16 bilbiroes (J91) 16 gyepips (J11) 64 squippies (J1) 16 teddies (J63) 24 tets 24 trips related: xxxoooFFFAAA.xx.F FxfoFfxFofxo.Vo.f xfFFfoFoxxof.oV.f FAoFxAxoAxFo.xx.F&#zx → CRF with cell list: 20 bilbiroes (J91) 16 paps 48 squippies (J1) 16 teddies (J63) 8 tets 16 trips | ||
124:AB2C4D1E1F1G2H4IJK2L4: xxxoooFFFAAABxxxF 2 AoFxAFoAxFoxxBxxF 2 xfFFfoFoxxofooVof 2 FAoFxAxoAxFoxxxBF &#zx → °) | ||
using here node marks / (pseudo) edge lengths: F=f+x=ff, V=2f, A=F+x=f+2x, B=V+x=2f+x=fff |
in o3o3o4o subsymmetry (up) | ||
---|---|---|
Representation: |
qo 3 oo 3 oo 4 ox &#zx (ico) | |
All layers & kaleido-facetings per layer: |
A: q3o3o4o B: o3o3o4x → B4: o3o3q4(-x) | |
A priori invalid combinations: |
none | |
Other layer-combinations: |
B4: qo 3 oo 3 oq 4 o(-x) &#zx | |
Stott expansion: (derived potential CRFs) |
1:-: wx 3 oo 3 oo 4 ox &#zx (poxic) → CRF with cell list: 24 esquidpies (J15) 16 tets 32 trips |
2:-: qo 3 xx 3 oo 4 ox &#zx = Wythoffian x3o4o3x (spic) with cell list: 48 octs 192 trips |
3:-: qo 3 oo 3 xx 4 ox &#zx (pocsric) → CRF with cell list: 8 coes 24 squobcues (J28) 16 tets 64 trips |
4:B4: qo 3 oo 3 oq 4 xo &#zx = Wythoffian o3x4o3o (rico) with cell list: 24 coes 24 cubes | |
12:-: wx 3 xx 3 oo 4 ox &#zx (owauprit) → CRF with cell list: 24 esquidpies (J15) 32 hips 8 octs 160 trips 16 tuts |
13:-: wx 3 oo 3 xx 4 ox &#zx = Wythoffian x3o4x3o (srico) with cell list: 24 coes 24 sircoes 96 trips | |
14:B4: wx 3 oo 3 oq 4 xo &#zx → °) (asks for non-regular hexagons: wx .. oq .. &#zx) |
23:-: qo 3 xx 3 xx 4 ox &#zx (pocprico) → CRF with cell list: 64 hips 24 squobcues (J28) 8 toes 128 trips 16 tuts | |
24:B4: qo 3 xx 3 oq 4 xo &#zx = Wythoffian x3o4x3o (srico) with cell list: 24 coes 24 sircoes 96 trips |
34:B4: qo 3 oo 3 xw 4 xo &#zx → °) (asks for non-regular hexagons: qo .. xw .. &#zx) | |
123:-: wx 3 xx 3 xx 4 ox &#zx = Wythoffian x3x4o3x (prico) with cell list: 96 hips 24 sircoes 24 toes 96 trips |
124:B4: wx 3 xx 3 oq 4 xo &#zx → °) (asks for non-regular hexagons: wx .. oq .. &#zx) | |
134:B4: wx 3 oo 3 xw 4 xo &#zx = Wythoffian o3x4x3o (cont) with cell list: 48 tics |
234:B4: qo 3 xx 3 xw 4 xo &#zx → °) (asks for non-regular hexagons: qo .. xw .. &#zx) | |
1234:B4: wx 3 xx 3 xw 4 xo &#zx = Wythoffian x3x4x3o (grico) with cell list: 24 gircoes 24 tics 96 trips |
|
(As it will turn out, the set of resulting polychora in o2o3o4o resp. . o3o4o here is identical to those which turn up from the corresponding consideration of hex wrt. these subsymmetries.)
in o2o3o4o subsymmetry (up) | ||
---|---|---|
Representation: |
qo 2 xo 3 ox 4 oo &#zx (ico) | |
All layers & kaleido-facetings per layer: |
A: q2x3o4o → A2: q 2(-x)3 x 4 o → A23: q 2 o 3(-x)4 q B: o2o3x4o → B3: o 2 x 3(-x)4 q → B32: o 2(-x)3 o 4 q | |
A priori invalid combinations: |
A23 → ‡) (q or w in extremal layers, i.e. A) B32 + neither A2 nor A23 → ‡) (u in A) A2 + B3 → ‡) (u in A, u in B) | |
Other layer-combinations: |
A2: qo 2 (-x)o 3 xx 4 oo &#zx A2B32: qo 2 (-x)(-x) 3 xo 4 oq &#zx B3: qo 2 xx 3 o(-x) 4 oq &#zx | |
Stott expansion: (derived potential CRFs) |
1:-: wx 2 xo 3 ox 4 oo &#zx (pexic) → CRF with cell list: 6 esquidpies (J15) 18 octs 8 trips |
2:A2: qo 2 ox 3 xx 4 oo &#zx (coatobcu) → CRF with cell list: 2 coes 12 cubes 16 tricues (J3) |
2:A2B32: qo 2 oo 3 xo 4 oq &#zx = Wythoffian o3o3x4o (rit) with cell list: 8 coes 16 tets |
3:B3: qo 2 xx 3 xo 4 oq &#zx (pabdirico) → CRF with cell list: 6 coes 12 cubes 2 toes 16 tricues (J3) | |
4:-: qo 2 xo 3 ox 4 xx &#zx (pacsrit) → CRF with cell list: 16 octs 2 sircoes 6 squobcues (J28) 24 trips |
12:A2: wx 2 ox 3 xx 4 oo &#zx → CRF with cell list: 2 coes 18 cubes 8 hips 16 tricues (J3) | |
12:A2B32: wx 2 oo 3 xo 4 oq &#zx → °) (asks for non-regular hexagons: wx .. .. oq &#zx) |
13:B3: wx 2 xx 3 xo 4 oq &#zx → °) (asks for non-regular hexagons: wx .. .. oq &#zx) | |
14:-: wx 2 xo 3 ox 4 xx &:#zx = Wythoffian o3x3o4x (srit) with cell list: 16 octs 8 sircoes 32 trips |
2(-3):A2: qo 2 ox 3 oo 4 oo &#zx = Wythoffian x3o3o4o (hex) with cell list: 16 tets | |
24:A2: qo 2 ox 3 xx 4 xx &#zx (tica gircobcu) → CRF with cell list: 12 ops 2 tics 16 tricues (J3) 24 trips |
24:A2B32: qo 2 oo 3 xo 4 xw &#zx → °) (asks for non-regular hexagons: qo .. .. xw &#zx) | |
34:B3: qo 2 xx 3 xo 4 xw &#zx → °) (asks for non-regular hexagons: qo .. .. xw &#zx) |
12(-3):A2: wx 2 ox 3 oo 4 oo &#zx (pex hex) → CRF with cell list: 16 tets 8 trips | |
124:A2: wx 2 ox 3 xx 4 xx &#zx → CRF with cell list: 12 cubes 8 hips 18 ops 2 tics 16 tricues (J3) 24 trips |
124: A2B32: wx 2 oo 3 xo 4 xw &#zx = Wythoffian o3o3x4x (tat) with cell list: 16 tets 8 tics | |
134:B3: wx 2 xx 3 xo 4 xw &#zx (pabdiproh) → CRF with cell list: 2 gircoes 12 ops 6 tics 16 tricues (J3) 8 trips |
2(-3)4:A2: qo 2 ox 3 oo 4 xx &#zx (pacsid pith) → CRF with cell list: 14 cubes 16 tets 24 trips | |
12(-3)4:A2: wx 2 ox 3 oo 4 xx &#zx = Wythoffian x3o3o4x (sidpith) with cell list: 32 cubes 16 tets 32 trips |
| |
in . o3o4o subsymmetry (up) | ||
additional, not prismatically symmetric combinations of formers: |
none (As A23 already was ruled out a priori this would ask for a local A and A2 at the top resp. bottom layer. But that combination would suffer again from producing an u=2x sized edge in A.) |
in o3o3o *b3o subsymmetry (up) | ||
---|---|---|
Representation: |
qoo 3 ooo 3 oqo *b3 ooq &#zx (ico) | |
All layers & kaleido-facetings per layer: |
A: q3o3o *b3o B: o3o3q *b3o C: o3o3o *b3q (As this representation does not show up (true / x-) edges within the layers, those thus cannot be inverted either. Therefore at most pure partial Stott expansions wrt. this subsymmetry remain possible.) | |
Stott expansion: (derived potential CRFs) |
1:-: wxx 3 ooo 3 oqo *b3 ooq &#zx (poxic) → CRF with cell list: 24 esquidpies (J15) 16 tets 32 trips related: .xx 3 .oo 3 .qo *b3 .oq &#zx = Wythoffian x3o3o4x (sidpith) with cell list: 32 cubes 16 tets 32 trips |
2:-: qoo 3 xxx 3 oqo *b3 ooq &#zx = Wythoffian x3o4o3x (spic) with cell list: 48 octs 192 trips related: .oo 3 .xx 3 .qo *b3 .oq &#zx = Wythoffian o3x3o4x (srit) with cell list: 16 octs 8 sircoes 32 trips |
12:-: wxx 3 xxx 3 oqo *b3 ooq &#zx (owau prit) → CRF with cell list: 24 esquidpies (J15) 32 hips 8 octs 160 trips 16 tuts related: .xx 3 .xx 3 .qo *b3 .oq &#zx = Wythoffian x3x3o4x (prit) with cell list: 24 cubes 32 hips 8 sircoes 16 tuts |
13:-: wxx 3 ooo 3 xwx *b3 ooq &#zx (pocsric) → CRF with cell list: 8 coes 24 squobcues (J28) 16 tets 64 trips related: wx. 3 oo. 3 xw. *b3 oo. &#zx = Wythoffian x3o3x4x (tat) with cell list: 16 tets 8 tics | |
123:-: wxx 3 xxx 3 xwx *b3 ooq &#zx (poc prico) → CRF with cell list: 64 hips 24 squobcues (J28) 8 toes 128 trips 16 tuts related: wx. 3 xx. 3 xw. *b3 oo. &#zx = Wythoffian o3x3x4x (grit) with cell list: 8 gircoes 32 trips 16 tuts |
134:-: wxx 3 ooo 3 xwx *b3 xxw &#zx = Wythoffian x3o4x3o (srico) with cell list: 24 coes 24 sircoes 96 trips related: wx. 3 oo. 3 xw. *b3 xx. &#zx = Wythoffian x3o3x4x (proh) with cell list: 16 coes 24 ops 8 tics 32 trips | |
1234:-: wxx 3 xxx 3 xwx *b3 xxw &#zx = Wythoffian x3x4o3x (prico) with cell list: 96 hips 24 sircoes 24 toes 96 trips related: .xx 3 .xx 3 .wx *b3 .xw &#zx = Wythoffian x3x3x4x (gidpith) with cell list: 8 gircoes 32 hips 24 ops 16 toes |
|
in o4o2o4o subsymmetry (up) | ||
---|---|---|
Representation: |
oxo 4 ooq 2 oxo 4 qoo &#zx (ico) | |
All layers & kaleido-facetings per layer: |
A: o4o o4q B: x4o x4o → B1: (-x)4q x4o → B13: (-x)4q (-x)4q ↳ B3: x4o (-x)4q → (B31 = B13) C: o4q o4o | |
Stott expansion: (derived potential CRFs) |
1:B1: xox 4 oqq 2 oxo 4 qoo &#zx → ‡) (q in C) |
2:-: oxo 4 xxw 2 oxo 4 qoo &#zx (bicyte ausodip) → CRF with cell list: 4 esquidpies (J15) 16 octs 4 squobcues (J28) 16 trips related: .xo 4 .xw 2 .xo 4 .oo &#zx (cyte cubau sodip) → CRF with cell list: 4 esquidpies (J15) 4 ops 16 squippies (J1) |
12:B1: xox 4 xww 2 oxo 4 qoo &#zx → ‡) (w in C) |
13:B13: xox 4 oqq 2 xox 4 qqo &#zx → ‡) (q in A, q in C) | |
24:-: oxo 4 xxw 2 oxo 4 wxx &#zx = Wythoffian o3x3o4x (srit) with cell list: 16 octs 8 sircoes 32 trips related: .xo 4 .xw 2 .xo 4 .xx &#zx (cyted srit) → CRF with cell list: 8 ops 4 sircoes 16 squippies (J1) 16 trips |
123:B13: xox 4 xww 2 xox 4 qqo &#zx → ‡) (q in A, w in C) | |
124:B1: xox 4 xww 2 oxo 4 wxx &#zx → ‡) (w in C) |
1234:B13: xox 4 xww 2 xox 4 wwx &#zx → ‡) (w in A, w in C) |
(As it will turn out, the set of resulting polychora in o2o3o4o resp. . o3o4o here is identical to those which turn up from the corresponding consideration of ico wrt. these subsymmetries.)
in o2o3o4o subsymmetry (up) | ||
---|---|---|
Representation: |
qo 2 ox 3 oo 4 oo &#zx (hex) | |
All layers & kaleido-facetings per layer: |
A: q2o3o4o B: o2x3o4o → B2: o 2(-x)3 x 4 o → B23: o 2 o 3(-x)4 q | |
A priori invalid combinations: |
none | |
Stott expansion: (derived potential CRFs) |
1:-: wx 2 ox 3 oo 4 oo &#zx (pex hex) = oxxo 3 oooo 4 oooo &#xt → CRF with cell list: 16 tets 8 trips |
2:B2: qo 2 xo 3 ox 4 oo &#zx = xox 3 oxo 4 ooo &#xt = Wythoffian x3o4o3o (ico) with cell list: 24 octs |
3:-: qo 2 ox 3 xx 4 oo &#zx (coatobcu) = oxo 3 xxx 4 ooo &#xt → CRF with cell list: 2 coes 12 cubes 16 tricues (J3) |
3:B23: qo 2 oo 3 xo 4 oq &#zx = ooo 3 xox 4 oqo &#xt = Wythoffian o3o3x4o (rit) with cell list: 8 coes 16 tets | |
4:-: qo 2 ox 3 oo 4 xx &#zx (pacsid pith) = oxo 3 ooo 4 xxx &#xt → CRF with cell list: 14 cubes 16 tets 24 trips |
12:B2: wx 2 xo 3 ox 4 oo &#zx (pexic) = xoox 3 oxxo 4 oooo &#xt → CRF with cell list: 6 esquidpies (J15) 18 octs 8 trips | |
13:-: wx 2 ox 3 xx 4 oo &#zx = oxxo 3 xxxx 4 oooo &#xt → CRF with cell list: 2 coes 18 cubes 8 hips 16 tricues (J3) |
13:B23: wx 2 oo 3 xo 4 oq &#zx → °) (asks for non-regular hexagons: wx .. .. oq &#zx) | |
14:-: wx 2 ox 3 oo 4 xx &#zx = oxxo 3 oooo 4 xxxx &#xt = Wythoffian x3o3o4x (sidpith) with cell list: 32 cubes 16 tets 32 trips |
23:B23: qo 2 xx 3 xo 4 oq &#zx (pabdirico) = xxx 3 xox 4 oqo &#xt → CRF with cell list: 6 coes 12 cubes 2 toes 16 tricues (J3) | |
24:B2: qo 2 xo 3 ox 4 xx &#zx (pacsrit) = xox 3 oxo 4 xxx &#xt → CRF with cell list: 16 octs 2 sircoes 6 squobcues (J28) 24 trips |
34:-: qo 2 ox 3 xx 4 xx &#zx (tica gircobcu) = oxo 3 xxx 4 xxx &#xt → CRF with cell list: 12 ops 2 tics 16 tricues (J3) 24 trips | |
34:B23: qo 2 oo 3 xo 4 xw &#zx → °) (asks for non-regular hexagons: qo .. .. xw &#zx) |
123:B23: wx 2 xx 3 xo 4 oq &#zx → °) (asks for non-regular hexagons: wx .. .. oq &#zx) | |
124:B2: wx 2 xo 3 ox 4 xx &#zx = xoox 3 oxxo 4 xxxx &#xt = Wythoffian o3x3o4x (srit) with cell list: 16 octs 8 sircoes 32 trips |
134:-: wx 2 ox 3 xx 4 xx &#zx = oxxo 3 xxxx 4 xxxx &#xt → CRF with cell list: 12 cubes 8 hips 18 ops 2 tics 16 tricues (J3) 24 trips | |
134:B23: wx 2 oo 3 xo 4 xw &#zx = oooo 3 xoox 4 xwwx &#xt = Wythoffian o3o3x4x (tat) with cell list: 16 tets 8 tics |
234:B23: qo 2 xx 3 xo 4 xw &#zx → °) (asks for non-regular hexagons: qo .. .. xw &#zx) | |
1234:B23: wx 2 xx 3 xo 4 xw &#zx (pabdiproh) = xxxx 3 xoox 4 xwwx &#xt → CRF with cell list: 2 gircoes 12 ops 6 tics 16 tricues (J3) 8 trips |
| |
in . o3o4o subsymmetry (up) | ||
additional, not prismatically symmetric combinations of formers: |
none |
in . o3o3o subsymmetry (up) | ||
---|---|---|
Representation: |
xo 3 oo 3 ox &#x (hex) | |
All layers & kaleido-facetings per layer: |
A: x3o3o → A1:(-x)3 x 3 o → A12: o 3(-x)3 x → A123: o 3 o 3(-x) B: o3o3x → B3: o 3 x 3(-x) → B32: x 3(-x)3 o → B321:(-x)3 o 3 o | |
A priori invalid combinations: |
A + B321 → ‡) (u in A) A1 + B32 → ‡) (u in A, u in B) A12 + B3 → ‡) (u in A, u in B) A123 + B → ‡) (u in B) | |
Stott expansion: (derived potential CRFs) |
1:A1: ox 3 xo 3 ox &#x (octaco) → CRF (segmentochoron) with cell list: 1 co 9 octs 6 squippies (J1) |
1:A1B321: oo 3 xo 3 oo &#x (octpy) → CRF (segmentochoron) with cell list: 1 oct 8 tets |
2:-: xo 3 xx 3 ox &#x (tuta) → CRF (segmentochoron) with cell list: 6 tets 8 tricues (J3) 2 tuts |
2:A12: oo 3 ox 3 xx &#x (tetatut) → CRF (segmentochoron) with cell list: 5 tets 4 tricues (J3) 1 tut | |
2:A12B32: ox 3 oo 3 xo &#x = Wythoffian x3o3o4o (hex) with cell list: 16 tets (axially dual orientation) |
12:A12: xx 3 ox 3 xx &#x (coatoe) → CRF (segmentochoron) with cell list: 1 co 6 cubes 1 toe 8 tricues (J3) | |
12:A12B321: xo 3 ox 3 xo &#x (octaco) → CRF (segmentochoron) with cell list: 1 co 9 octs 6 squippies (J1) |
13:A1B3: ox 3 xx 3 xo &#x (tuta) → CRF (segmentochoron) with cell list: 6 tets 8 tricues (J3) 2 tuts | |
13:A1B321: oo 3 xo 3 xx &#x (tetatut) → CRF (segmentochoron) with cell list: 5 tets 4 tricues (J3) 1 tut |
13:A123B321: xo 3 oo 3 ox &#x = Wythoffian x3o3o4o (hex) with cell list: 16 tets (identical orientation) | |
123:A123B321: xo 3 xx 3 ox &#x (tuta) → CRF (segmentochoron) with cell list: 6 tets 8 tricues (J3) 2 tuts |
in o4o2o4o subsymmetry (up) | ||
---|---|---|
Representation: |
xo 4 oo 2 ox 4 oo &#zx (hex) | |
All layers & kaleido-facetings per layer: |
A: x4o o4o → A1: (-x)4 q o 4 o B: o4o x4o → B3: o 4 o (-x)4 q | |
Stott expansion: (derived potential CRFs) |
1:A1: ox 4 qo 2 ox 4 oo &#zx (cytau tes) → CRF with cell list: 4 cubes 4 octs 16 squippies (J1) |
2:-: xo 4 xx 2 ox 4 oo &#zx (quawros) → CRF with cell list: 4 cubes 16 tets 16 trips |
12:A1: ox 4 wx 2 ox 4 oo &#zx (cyte cubau sodip) → CRF with cell list: 4 esquidpies (J15) 4 ops 16 squippies (J1) |
13:A1B3: ox 4 qo 2 xo 4 oq &#zx = Wythoffian o3o3x4o (rit) with cell list: 8 coes 16 tets | |
14:A1: ox 4 qo 2 ox 4 xx &#zx (cyte opau sodip) → CRF with cell list: 8 cubes 16 squippies (J1) 4 squobcues (J28) 16 trips |
24:-: xo 4 xx 2 ox 4 xx &#zx = Wythoffian x3o3o4x (sidpith) with cell list: 32 cubes 16 tets 32 trips | |
123:A1B3: ox 4 wx 2 xo 4 oq &#zx → °) (asks for non-regular hexagons: .. wx .. oq &#zx) |
124:A1: ox 4 wx 2 ox 4 xx &#zx (cyted srit) → CRF with cell list: 8 ops 4 sircoes 16 squippies (J1) 16 trips | |
1234:A1B3: ox 4 wx 2 xo 4 xw &#zxx = Wythoffian o3o3x4x (tat) with cell list: 16 tets 8 tics |
|
in o2o2o2o subsymmetry (up) | ||
---|---|---|
Representation: |
qooo 2 oqoo 2 ooqo 2 oooq &#zx (hex) | |
All layers & kaleido-facetings per layer: |
A: q2o2o2o B: o2q2o2o C: o2o2q2o D: o2o2o2q (As this representation does not show up (true / x-) edges within the layers, those thus cannot be inverted either. Therefore at most pure partial Stott expansions wrt. this subsymmetry remain possible.) | |
Stott expansion: (derived potential CRFs) |
1:A1: wxxx 2 oqoo 2 ooqo 2 oooq &#zx (pexhex) → CRF with cell list: 16 tets 8 trips related: .xxx 2 .qoo 2 .oqo 2 .ooq &#zx = Wythoffian x x3o4o (ope) with cell list: 2 octs 8 trips |
12:-: wxxx 2 xwxx 2 ooqo 2 oooq &#zx (quawros) → CRF with cell list: 4 cubes 16 tets 16 trips |
123:-: wxxx 2 xwxx 2 xxwx 2 oooq &#zx (pacsid pith) → CRF with cell list: 14 cubes 16 tets 24 trips |
1234:-: wxxx 2 xwxx 2 xxwx 2 xxxw &#zx = Wythoffian x3o3o4x (sidpith) with cell list: 32 cubes 16 tets 32 trips related: .xxx 2 .wxx 2 .xwx 2 .xxw &#zx = Wythoffian x x3o4x (sircope) with cell list: 18 cubes 2 sircoes 8 trips |
(As it will turn out, the set of resulting polychora in . o3o3o here is identical to those which turn up from the corresponding consideration of rap wrt. this subsymmetry.)
in . o3o3o subsymmetry (up) | ||
---|---|---|
Representation: |
ox 3 oo 3 oo &#x (pen) | |
All layers & kaleido-facetings per layer: |
A: o3o3o B: x3o3o → B1:(-x)3 x 3 o → B12: o 3(-x)3 x → B123: o 3 o 3(-x) | |
A priori invalid combinations: |
none | |
Stott expansion: (derived potential CRFs) |
1:B1: xo 3 ox 3 oo &#x = Wythoffian o3x3o4o (rap) with cell list: 5 octs 5 tets |
2:-: ox 3 xx 3 oo &#x (octatut) → CRF (segmentochoron) with cell list: 1 oct 4 tricues (J3) 4 trips 1 tut |
2:B12: oo 3 xo 3 ox &#x = Wythoffian o3x3o3o (rap) with cell list: 5 octs 5 tets (inverted orientation) |
3:-: ox 3 oo 3 xx &#x (tetaco) → CRF (segmentochoron) with cell list: 1 co 5 tets 10 trips | |
3:B123: oo 3 oo 3 xo &#x = Wythoffian o3o3o3x (pen) with cell list: 5 tets (dual orientation) |
12:B12: xx 3 xo 3 ox &#x (coatut) → CRF (segmentochoron) with cell list: 1 co 4 octs 4 tricues (J3) 6 trips 1 tut | |
13:B1: xo 3 ox 3 xx &#x (coatut) → CRF (segmentochoron) with cell list: 1 co 4 octs 4 tricues (J3) 6 trips 1 tut (inverted orientation) |
13:B123: xx 3 oo 3 xo &#x (tetaco) → CRF (segmentochoron) with cell list: 1 co 5 tets 10 trips (inverted orientation) | |
23:-: ox 3 xx 3 xx &#x (tutatoe) → CRF (segmentochoron) with cell list: 4 hips 1 toe 4 tricues (J3) 6 trips 1 tut |
23:B123: oo 3 xx 3 xo &#x (octatut) → CRF (segmentochoron) with cell list: 1 oct 4 tricues (J3) 4 trips 1 tut | |
123:B123: xx 3 xx 3 xo &#x (tutatoe) → CRF (segmentochoron) with cell list: 4 hips 1 toe 4 tricues (J3) 6 trips 1 tut (inverted orientation) |
|
(As it will turn out, the set of resulting polychora in . o3o3o here is identical to those which turn up from the corresponding consideration of pen wrt. this subsymmetry.)
in . o3o3o subsymmetry (up) | ||
---|---|---|
Representation: |
xo 3 ox 3 oo &#x (rap) | |
All layers & kaleido-facetings per layer: |
A: x3o3o → A1: (-x)3x3o → A12: o3(-x)3x → A123: o3o3(-x) B: o3x3o → B2: x3(-x)3x → B21: (-x)3o3x → B213: (-x)3x(-x) → B2132: o3(-x)3o ↳ B23: x3o3(-x) → B231 = B213 | |
A priori invalid combinations: |
A + B21,B213 A1 + B2,B2132,B23 A12 + B,B213,B23 A123 + B2,B21 | |
Other layer-combinations: |
B2: xx3o(-x)3ox&#x B2132: xo3o(-x)3oo&#x → ‡ B23: xx3oo3o(-x)&#x A1: (-x)o3xx3oo&#x A1B21: (-x)(-x)3xo3ox&#x A1B213: (-x)(-x)3xx3o(-x)&#x A12B2: ox3(-x)(-x)3xx&#x A12B2132: oo3(-x)(-x)3xo&#x A123: oo3ox3(-x)o&#x → ‡ A123B213: o(-x)3ox3(-x)(-x)&#x A123B2132: oo3o(-x)3(-x)o&#x A123B23: ox3oo3(-x)(-x)&#x | |
Stott expansion: (derived potential CRFs) |
1:A1 = 23:A123B23: ox 3 xx 3 oo &#x (octatut) → CRF (segmentochoron) with cell list: 1 oct 4 tricues (J3) 4 trips 1 tut |
1:A1B21 = 23:A123B2132: oo 3 xo 3 ox &#x = Wythoffian o3x3o3o (rap) with cell list: 5 octs 5 tets (inverted orientation) |
2:B2 = 123:A123B2132: xx 3 xo 3 ox &#x (coatut) → CRF (segmentochoron) with cell list: 1 co 4 octs 4 tricues (J3) 6 trips 1 tut |
2:A12B2: ox 3 oo 3 xx &#x (tetaco) → CRF (segmentochoron) with cell list: 1 co 4 octs 4 tricues (J3) 6 trips 1 tut | |
2:A12B2132: oo 3 oo 3 xo &#x = Wythoffian x3o3o3o (pen) with cell list: 5 tets |
3:-: xo 3 ox 3 xx &#x (coatut) → CRF (segmentochoron) with cell list: 1 co 4 octs 4 tricues (J3) 6 trips 1 tut (inverted orientation) | |
3:A123B23: ox 3 oo 3 oo &#x = Wythoffian o3o3o3x (pen) with cell list: 5 tets (dual orientation) |
12:A12B2132: xx 3 oo 3 xo &#x (tetaco) → CRF (segmentochoron) with cell list: 1 co 4 octs 4 tricues (J3) 6 trips 1 tut (inverted orientation) | |
13:A1: ox 3 xx 3 xx &#x (tutatoe) → CRF (segmentochoron) with cell list: 4 hips 1 toe 4 tricues (J3) 6 trips 1 tut |
13:A1B213: oo 3 xx 3 xo &#x (octatut) → CRF (segmentochoron) with cell list: 1 oct 4 tricues (J3) 4 trips 1 tut (inverted orientation) | |
13:A123B213: xo 3 ox 3 oo &#x = Wythoffian o3x3o3o (rap) with cell list: 5 octs 5 tets (itself again) |
23:B23: xx 3 xx 3 xo &#x (tutatoe) → CRF (segmentochoron) with cell list: 4 hips 1 toe 4 tricues (J3) 6 trips 1 tut (inverted orientation) |
(As it will turn out, the set of resulting polychora in . o3o3o here is identical to those which turn up from the corresponding consideration of spid wrt. this subsymmetry.)
in . o3o3o subsymmetry (up) | ||
---|---|---|
Representation: |
oxx 3 xxo 3 oox &#xt (srip) | |
All layers & kaleido-facetings per layer: |
A: o3x3o → A2: x 3(-x)3 x → A21: (-x)3 o 3 x → A213: (-x)3 x 3(-x) → A2132: o 3(-x)3 o ↳ A23: x 3 o 3(-x) → (A231 = A213) → (A2312 = A2132) B: x3x3o → B1:(-x)3 u 3 o ↳ B2: u 3(-x)3 x → B23: u 3 o 3(-x) C: x3o3x → C1:(-x)3 x 3 x → C12: o 3(-x)3 u ↳ C13: (-x)3 u 3(-x) ↳ C3: x 3 x 3(-x) → (C31 = C13) ↳ C32: u 3(-x)3 o | |
A priori invalid combinations: |
A + B2,B23 A + C12,C32 A2 + B,B1,B23 A2 + C1,C3,C13 A21 + B,B1,B2,B23 → generally A23 + B1,B2 A23 + C,C1,C12 A213 + B,B2,B23 A213 + C,C1,C3,C12,C32 A2132 + B,B1,B2,B23 → generally B + C1,C12,C13,C32 B1 + C,C3,C12,C32 B2 + C1,C3,C12,C32 B23 + C,C1,C12,C13 C12 generally (u in extremal layer) C13 generally (u in extremal layer) C32 generally (u in extremal layer) | |
Other layer-combinations: |
B1C1: o(-x)(-x) 3 xux 3 oox &#xt A2B2: xux 3 (-x)(-x)o 3 xxx &#xt C3: oxx 3 xxx 3 oo(-x) &#xt A23C3: xxx 3 oxx 3 (-x)o(-x) &#xt → †) A23B23C3: xux 3 oox 3 (-x)(-x)(-x) &#xt | |
Stott expansion: (derived potential CRFs) |
1:B1C1: xoo 3 xux 3 oox &#xt = Wythoffian o3x3x3o (deca) with cell list: 10 tuts |
2:A2B2: xux 3 oox 3 xxx &#xt (coatotum) → CRF with cell list: 1 co 6 hips 1 toe 4 tricues (J3) 4 trips 4 tuts |
3:C3: oxx 3 xxx 3 xxo &#xt (tutatoe gybcu) → CRF with cell list: 8 hips 8 tricues (J3) 12 trips 2 tuts (bistratic segmentochoral stack) related: ox. 3 xx. 3 xx. &#x (tutatoe) → CRF (segmentochoron) with cell list: 4 hips 1 toe 4 tricues (J3) 6 trips 1 tut |
3:A23B23C3: xux 3 oox 3 ooo &#xt = Wythoffian x3x3o3o (tip) with cell list: 5 tets 5 tuts |
in . o3o3o subsymmetry (up) | ||
---|---|---|
Representation: |
oox 3 xux 3 xoo &#xt (deca) | |
All layers & kaleido-facetings per layer: |
A: o3x3x → A2: x3(-x)3u → A21: (-x)3o3u → A213: (-x)3u3(-u) → A2132: x3(-u)3o → A21321: (-x)3(-x)3o ↳ A23: x3x3(-u) → A231 = A213 ↳ A232: u3(-x)3(-x) → A2321: (-u)3x3(-x) → A23212 = A21321 ↳ A3: o3u3(-x) → A32: u3(-u)3x → A321: (-u)3o3x → A3213 = A2321 ↳ A323 = A232 B: o3u3o → B2: u3(-u)3u → B21: (-u)3o3u → B213: (-u)3u3(-u) → B2132: o3(-u)3o ↳ B23: u3o3(-u) → B231 = B213 C: x3x3o → C1: (-x)3u3o → C12: x3(-u)3u → C121: (-x)3(-x)3u → C1213: (-x)3x3(-u) → C12132: o3(-x)3(-x) ↳ C123: x3o3(-u) → C1231 = C1213 ↳ C2: u3(-x)3x → C21: (-u)3x3x → C212 = C121 ↳ C213: (-u)3u3(-x) → C2132: o3(-u)3x → C21323 = C12132 ↳ C23: u3o3(-x) → C231 = C213 | |
A priori invalid combinations: |
B + A2,A21,A213,A2132,A21321,A23,A232,A2321,A32,A321 - i.e. only A,A3 + C12,C121,C1213,C12132,C123,C2,C21,C213,C2132,C23 - i.e. only C,C1 B2 + A,A21,A213,A2132,A21321,A23,A232,A2321,A3,A321 - i.e. only A2,A32 + C,C1,C121,C1213,C12132,C123,C21,C213,C2132,C23 - i.e. only C12,C2 B21 + A,A2,A213,A2132,A21321,A23,A232,A2321,A3,A32 - i.e. only A21,A321 + C,C1,C12,C1213,C12132,C123,C2,C213,C2132,C23 - i.e. only C121,C21 B213 + A,A2,A21,A2132,A21321,A23,A232,A3,A32,A321 - i.e. only A213,A2321 + C,C1,C12,C121,C12132,C123,C2,C21,C2132,C23 - i.e. only C1213,C213 B2132 + A,A2,A21,A213,A23,A232,A2321,A3,A32,A321 - i.e. only A2132,A21321 + C,C1,C12,C121,C1213,C123,C2,C21,C213,C23 - i.e. only C12132,C2132 B23 + A,A2,A21,A213,A2132,A21321,A2321,A3,A32,A321 - i.e. only A23,A232 + C,C1,C12,C121,C1213,C12132,C2,C21,C213,C2132 - i.e. only C123,C23 | |
Other layer-combinations: |
ABC oox 3 xux 3 xoo &#xt (self-inv) : itself ABC1 oo(-x) 3 xuu 3 xoo &#xt (inv = A3BC) A3BC1 oo(-x) 3 uuu 3 (-x)oo &#xt (self-inv) A2B2C12 xux 3 (-x)(-u)(-u) 3 uuu &#xt (inv = A32B2C2) A2B2C2 xuu 3 (-x)(-u)(-x) 3 uux &#xt (self-inv) : asks for corealmic cells with non-convex exterior blend A32B2C12 uux 3 (-u)(-u)(-u) 3 xuu &#xt (self-inv) A21B21C121 (-x)(-u)(-x) 3 oo(-x) 3 uuu &#xt (inv = A232B23C23) : asks for non-convex cell-join at inner layer A21B21C21 (-x)(-u)(-u) 3 oox 3 uux &#xt (inv = A23B23C23) : asks for non-convex cell-join at inner layer A321B21C121 (-u)(-u)(-x) 3 oo(-x) 3 xuu &#xt (inv = A232B23C123) A321B21C21 (-u)(-u)(-u) 3 oox 3 xux &#xt (inv = A23B23C123) A213B213C1213 (-x)(-u)(-x) 3 uux 3 (-u)(-u)(-u) &#xt (inv = A2321B213C213) : asks for non-convex cell-join at inner layer A213B213C213 (-x)(-u)(-u) 3 uuu 3 (-u)(-u)(-x) &#xt (self-inv) : asks for non-convex cell-join at inner layer A2321B213C1213 (-u)(-u)(-x) 3 xux 3 (-x)(-u)(-u) &#xt (self-inv) A2132B2132C12132 xoo 3 (-u)(-u)(-u) 3 oo(-x) &#xt (inv = A21321B2132C2132) : asks for non-convex cell-join at inner layer A2132B2132C2132 xoo 3 (-u)(-u)(-u) 3 oox &#xt (self-inv) : asks for non-convex cell-join at inner layer A21321B2132C12132 (-x)oo 3 (-x)(-u)(-u) 3 oo(-x) &#xt (self-inv) | |
Stott expansion: (derived potential CRFs) |
-:ABC = 1133:A2321B213C1213: oox 3 xux 3 xoo &#xt = Wythoffian o3x3x3o (deca) with cell list: 10 tuts (itself) |
1(-2):ABC1 = inv 112(-3):A321B21C121: xxo 3 oxx 3 xoo &#xt = Wythoffian x3o3x3o (srip) with cell list: 5 coes 5 octs 10 trips related: xx. 3 ox. 3 xo. &#x (coatut) → CRF (segmentochoron) with cell list: 1 co 4 octs 4 tricues (J3) 6 trips 1 tut related: .xo 3 .xx 3 .oo &#x (octatut) → CRF (segmentochoron) with cell list: 1 oct 4 tricues (J3) 4 trips 1 tut |
1(-2)3:A3BC1 = (-1)222(-3):A32B2C12: xxo 3 xxx 3 oxx &#xt (tutato gybcu) → CRF with cell list: 8 hips 8 tricues (J3) 12 trips 2 tuts related: xx. 3 xx. 3 ox. &#x (tutatoe) → CRF (segmentochoron) with cell list: 4 hips 1 toe 4 tricues (J3) 6 trips 1 tut |
1(-2)(-2)3:A3BC1 = (-1)22(-3):A32B2C12: xxo 3 ooo 3 oxx &#xt = Wythoffian x3o3o3x (spid) with cell list: 10 tets 20 trips related: xx. 3 oo. 3 ox. &#x (tetaco) → CRF (segmentochoron) with cell list: 1 co 5 tets 10 trips | |
22(-3):A2B2C12 = inv 111:A321B21C21: xux 3 xoo 3 xxx &#xt (coatotum) → CRF with cell list: 1 co 6 hips 1 toe 4 tricues (J3) 4 trips 4 tuts |
22(-3)(-3):A2B2C12 = inv 11:A321B21C21: xux 3 xoo 3 ooo &#xt = Wythoffian x3x3o3o (tip) with cell list: 5 tets 5 tuts | |
1221:A21321B2132C12132: oxx 3 xoo 3 xxo &#xt (tetaco altut) → CRF with cell list: 6 gybefs (J26) 4 octs 5 tets 4 tricues (J3) 4 trips 1 tut related: ox. 3 xo. 3 xx. &#x (coatut) → CRF (segmentochoron) with cell list: 1 co 4 octs 4 tricues (J3) 6 trips 1 tut related: .xx 3 .oo 3 .xo &#x (tetaco) → CRF (segmentochoron) with cell list: 1 co 5 tets 10 trips |
|
in . o2o3o subsymmetry (up) | |
---|---|
Representation: |
oxuxo 2 xuxoo 3 ooxux &#xt (deca) |
All layers & kaleido-facetings per layer: |
A: o x3o → A2: o (-x)3x → A23: o o3(-x) B: x u3o → B1: (-x) u3o → B12: (-x) (-u)3u → B123: (-x) o3(-u) ↳ B2: x (-u)3u → B21 = B12 ↳ B23: x o3(-u) → B231 = B123 C: u x3x → C1: (-u) x3x → C12: (-u) (-x)3u → C123: (-u) x3(-u) → C1232: (-u) (-x)3(-x) ↳ C2: u (-x)3u → C21 = C12 ↳ C23 = u x3(-u) → C231 = C123 ↳ C232: u (-x)3(-x) → C2321 = C1232 ↳ C3: u u3(-x) → C31: (-u) u3(-x) → C312: (-u) (-u)3x → C3123 = C1232 ↳ C32 = u (-u)3x → C321 = C312 ↳ C323 = C232 D: x o3u → D1: (-x) o3u → D13: (-x) u3(-u) → D132: (-x) (-u)3o ↳ D3: x u3(-u) → D31= D13 ↳ D32: x (-u)3o → D321 = D132 E: o o3x → E3: o x3(-x) → E32: o (-x)3o |
A priori invalid combinations: |
A + B12,B123,B2,B23, i.e. only B,B1 A2 + B,B1,B123,B23, i.e. only B12,B2 A23 + B,B1,B12,B2, i.e. only B123,B23 B + C1,C12,C123,C1232,C2,C23,C232,C31,C312,C32, i.e. only C,C3 B1 + C,C12,C123,C1232,C2,C23,C232,C3,C312,C32, i.e. only C1,C31 B12 + C,C1,C123,C1232,C2,C23,C232,C3,C31,C32, i.e. only C12,C312 B123 + C,C1,C12,C2,C23,C232,C3,C31,C312,C32, i.e. only C123,C1232 B2 + C,C1,C12,C123,C1232,C23,C232,C3,C31,C312, i.e. only C2,C32 B23 + C,C1,C12,C123,C1232,C2,C3,C31,C312,C32, i.e. only C23,C232 C + D1,D13,D132,D3,D32, i.e. only D C1 + D,D13,D132,D3,D32, i.e. only D1 C12 + D,D13,D132,D3,D32, i.e. only D1 C123 + D,D1,D132,D3,D32, i.e. only D13 C1232 + D,D1,D13,D3,D32, i.e. only D132 C2 + D1,D13,D132,D3,D32, i.e. only D C23 + D,D1,D13,D132,D32, i.e. only D3 C232 + D,D1,D13,D132,D3, i.e. only D32 C3 + D,D1,D13,D132,D32, i.e. only D3 C31 + D,D1,D132,D3,D32, i.e. only D13 C312 + D,D1,D13,D3,D32, i.e. only D132 C32 + D,D1,D13,D132,D3, i.e. only D32 D + E3,E32, i.e. only E D1 + E3,E32, i.e. only E D13 + E,E32, i.e. only E3 D132 + E,E3, i.e. only E32 D3 + E,E32, i.e. only E3 D32 + E,E3, i.e. only E32 |
Other layer-combinations: |
ABCDE oxuxo 2 xuxoo 3 ooxux &#xt : (self-inv) → itself ABC3D3E3 oxuxo 2 xuuux 3 oo(-x)(-u)(-x) &#xt : (inv = A2B2C2DE) → ‡ AB1C1D1E o(-x)(-u)(-x)o 2 xuxoo 3 ooxux &#xt : (self-inv) → ‡ AB1C31D13E3 o(-x)(-u)(-x)o 2 xuuux 3 oo(-x)(-u)(-x) &#xt : (inv = A2B12C12D1E) → ‡ A2B12C312D132E32 o(-x)(-u)(-x)o 2 (-x)(-u)(-u)(-u)(-x) 3 xuxoo &#xt : (inv = A23B123C123D13E3) → ‡ A23B123C1232D132E32 o(-x)(-u)(-x)o 2 oo(-x)(-u)(-x) 3 (-x)(-u)(-x)oo &#xt : (self-inv) → ‡ A23B23C23D3E3 oxuxo 2 ooxux 3 (-x)(-u)(-u)(-u)(-x) &#xt : (inv = A2B2C32D32E32) A23B23C232D32E32 oxuxo 2 oo(-x)(-u)(-x) 3 (-x)(-u)(-x)oo &#xt : (self-inv) → ‡ |
Stott expansion: (derived potential CRFs) |
22:A23B23C23D3E3: oxuxo 2 ooxux 3 xooox &#xt : itself non-convex, but dissectable into related: ox... 2 oo... 3 xo... &#x = Wythoffian x3o3o3o (pen) with cell list: 5 tet related: .xuxo 2 .oxux 3 .ooox &#xt = Wythoffian x3x3o3o (tip) with cell list: 5 tet 5 tut |
(As it will turn out, the set of resulting polychora in . o3o3o here is identical to those which turn up from the corresponding consideration of srip wrt. this subsymmetry.)
in . o3o3o subsymmetry (up) | ||
---|---|---|
Representation: |
xxo 3 ooo 3 oxx &#xt (spid) | |
All layers & kaleido-facetings per layer: |
A: x3o3o → A1: (-x)3 x 3 o → A12: o 3(-x)3 x → A123: o 3 o 3(-x) B: x3o3x → B1: (-x)3 x 3 x → B12: o 3(-x)3 u ↳ B13: (-x)3 u 3(-x) ↳ B3: x 3 x 3(-x) → (B31 = B13) ↳ B32: u 3(-x)3 o C: o3o3x → C3: o 3 x 3(-x) → C32: x 3(-x)3 o → C321: (-x)3 o 3 o | |
A priori invalid combinations: |
A + B1,B12,B13 A1 + B,B3,B12,B32 A1 + C32 A12 + B1,B3,B13,B32 A12 + C3 A123 + B,B1,B12,B13,B32 A123 + C B + C3,C321 B1 + C3,C32 B3 + C,C32,C321 B12 + C3,C32,C321 B13 + C,C32,C321 B32 + C,C3,C321 | |
Other layer-combinations: |
A1B1: (-x)(-x)o 3 xxo 3 oxx &#xt A12: oxo 3 (-x)oo 3 xxx &#xt → †) A12B12: ooo 3 (-x)(-x)o 3 xux &#xt A12C32: oxx 3 (-x)o(-x) 3 xxo &#xt → †) A123B3C3: oxo 3 oxx 3 (-x)(-x)(-x) &#xt → †) A1B13C3: (-x)(-x)o 3 xux 3 o(-x)(-x) &#xt | |
Stott expansion: (derived potential CRFs) |
1:A1B1: oox 3 xxo 3 oxx &#xt = Wythoffian x3o3x3o (srip) with cell list: 5 coes 5 octs 10 trips related: .ox 3 .xo 3 .xx &#x (coatut) → CRF (segmentochoron) with cell list: 1 co 4 octs 4 tricues (J3) 6 trips 1 tut related: oo. 3 xx. 3 ox. &#x (octatut) → CRF (segmentochoron) with cell list: 1 oct 4 tricues (J3) 4 trips 1 tut |
2:-: xxo 3 xxx 3 oxx &#xt (tutatoe gybcu) → CRF with cell list: 8 hips 8 tricues (J3) 12 trips 2 tuts (bistratic segmentochoral stack) related: xx. 3 xx. 3 ox. &#x (tutatoe) → CRF (segmentochoron) with cell list: 4 hips 1 toe 4 tricues (J3) 6 trips 1 tut |
2:A12B12: ooo 3 oox 3 xux &#xt = Wythoffian x3x3o3o (tip) with cell list: 5 tets 5 tuts |
13:A1B13C3: xoo 3 xux 3 oox &#xt = Wythoffian o3x3x3o (deca) with cell list: 10 tuts |
in . o2o3o subsymmetry (up) | |
---|---|
Representation: |
x(ou)x 2 x(xo)o 3 o(xo)x &#xt (spid) |
All layers & kaleido-facetings per layer: |
A: x2x3o → A1: (-x)2 x 3 o → A12: (-x)2(-x)3 x → A123: (-x)2 o 3(-x) ↳ A2: x 2(-x)3 x → (A21 = A12) ↳ A23: x 2 o 3(-x) → (A231 = A123) B: o2x3x → B2: o 2(-x)3 u ↳ B3: o 2 u 3(-x) C: u2o3o D: x2o3x → D1: (-x)2 o 3 x → D13: (-x)2 x 3(-x) → D132: (-x)2(-x)3 o ↳ D3: x 2 x 3(-x) → (D31 = D13) ↳ D32: x 2(-x)3 o → (D321 = D132) |
A priori invalid combinations: |
A + B2,D1,D13,D32,D132 A1 + B2,D,D3,D32,D132 A2 + B,B3,D1,D3,D13,D132 A12 + B,B3,D,D3,D13,D32 A23 + B,D,D1,D13,D132 A123 + B,D,D1,D3,D32 B + D3,D13,D32,D132 B2 + D3,D13 B3 + D,D1 |
Other layer-combinations: |
B3D3 x(ou)x 2 x(uo)x 3 o((-x)o)(-x) &#xt A1D1 (-x)(ou)(-x) 2 x(xo)o 3 o(xo)x &#xt → † A1B3D13 (-x)(ou)(-x) 2 x(uo)x 3 o((-x)o)(-x) &#xt → † A2B2D32 x(ou)x 2 (-x)((-x)o)(-x) 3 x(uo)o &#xt → † A12B2D132 (-x)(ou)(-x) 2 (-x)((-x)o)(-x) 3 x(uo)o &#xt → † A23B2D32 x(ou)x 2 o((-x)o)(-x) 3 (-x)(uo)o &#xt → † A123B2D132 (-x)(ou)(-x) 2 o((-x)o)(-x) 3 (-x)(uo)o &#xt → † |
Stott expansion: (derived potential CRFs) |
3:B3D3: x(ou)x 2 x(uo)x 3 x(ox)o &#xt (biscsrip) → CRF with cell list: 3 coes 1 hip 2 oct 3 squippies (J1) 2 tricues (J3) 7 trips |
in o2o3o5o subsymmetry (up) | ||
---|---|---|
Representation: |
DCBAVFfxoo 2 xoxFofofVx 3 oxoofoxxoo 5 ooxooxxoof &#zx (rox) | |
All layers & kaleido-facetings per layer: |
A: D2x3o5o → A2: D2(-x)3x5o → A23: D2o3(-x)5f B: C2o3x5o → B3: C2x3(-x)5f → B32: C2(-x)3o5f C: B2x3o5x → C2: B2(-x)3x5x → C23: B2o3(-x)5F ↳ C24: B2(-x)3F5(-x) ↳ C4: B2x3f5(-x) → (C42 = C24) D: A2F3o5o E: V2o3f5o F: F2f3o5x → F4: F2f3f5(-x) G: f2o3x5x → G3: f2x3(-x)5F → G32: f2(-x)3o5F ↳ G4: f2o3F5(-x) H: x2f3x5o → H1: (-x)2f3x5o → H13: (-x)2F3(-x)5f ↳ H3: x2F3(-x)5f → (H31 = H13) I: o2V3o5o i: o2x3o5f → i2: o2(-x)3x5f → i23: o2o3(-x)5V (Note, I and i both belong to the same hyperplane o2... .) | |
A priori invalid combinations: |
A + B32, C2, C24, G32, i2 A2 + B3, C, C4, C23, G3, H3, H13, i, i23 A23 + B, C2, G, H, H1, i2 B + C23, G3, H3, H13, i23 B3 + C2, C24, G, G32, H, H1, i2 B32 + C, C4, G3, i C + F4, G4, G32, i2 C2 + F4, G3, G4, H3, H13, i, i23 C4 + F, G, G32, i2 C23 + G, H, H1, i2 C24 + F, G, G3, i F + G4 F4 + G G + H3, H13, i23 G3 + H, H1, i2 G32 + i H + i23 H1 + i23 H3 + i2 H13 + i2 (all these would provide u edges (→ ‡); thus reducing from 4320 to 70 potential combinations only) | |
Other layer-combinations: |
H1: DCBAVFf(-x)oo 2 xoxFofofVx 3 oxoofoxxoo 5 ooxooxxoof &#zx → †) (dead end at I) C4F4G4: DCBAVFfxoo 2 xoxFofofVx 3 oxfoffFxoo 5 oo(-x)oo(-x)(-x)oof &#zx → ‡ (f in C, E, F) C4F4G4H1: DCBAVFf(-x)oo 2 xoxFofofVx 3 oxfoffFxoo 5 oo(-x)oo(-x)(-x)oof &#zx → †) B3G3H3: DCBAVFfxoo 2 xxxFofxFVx 3 o(-x)oofo(-x)(-x)oo 5 ofxooxFfof &#zx → ‡ (f in G, i) B3G3H3i23: DCBAVFfxoo 2 xxxFofxFVo 3 o(-x)oofo(-x)(-x)o(-x) 5 ofxooxFfoV &#zx B3G3H13: DCBAVFf(-x)oo 2 xxxFofxFVx 3 o(-x)oofo(-x)(-x)oo 5 ofxooxFfof &#zx → †) (dead end at I) B3G3H13i23: DCBAVFf(-x)oo 2 xxxFofxFVo 3 o(-x)oofo(-x)(-x)o(-x) 5 ofxooxFfoV &#zx → †) (dead end at I) B3C4F4G3H3: DCBAVFfxoo 2 xxxFofxFVx 3 o(-x)foff(-x)(-x)oo 5 of(-x)oo(-x)Ffof &#zx → †) B3C4F4G3H3i23: DCBAVFfxoo 2 xxxFofxFVo 3 o(-x)foff(-x)(-x)o(-x) 5 of(-x)oo(-x)FfoV &#zx → †) B3C4F4G3H13: DCBAVFf(-x)oo 2 xxxFofxFVx 3 o(-x)foff(-x)(-x)oo 5 of(-x)oo(-x)Ffof &#zx → †) B3C4F4G3H13i23: DCBAVFf(-x)oo 2 xxxFofxFVo 3 o(-x)foff(-x)(-x)o(-x) 5 of(-x)oo(-x)FfoV &#zx → †) B3C4F4G4H3: DCBAVFfxoo 2 xxxFofoFVx 3 o(-x)foffF(-x)oo 5 of(-x)oo(-x)(-x)fof &#zx → †) B3C4F4G4H3i23: DCBAVFfxoo 2 xxxFofoFVo 3 o(-x)foffF(-x)o(-x) 5 of(-x)oo(-x)(-x)foV &#zx → †) B3C4F4G4H13: DCBAVFf(-x)oo 2 xxxFofoFVx 3 o(-x)foffF(-x)oo 5 of(-x)oo(-x)(-x)fof &#zx → †) B3C4F4G4H13i23: DCBAVFf(-x)oo 2 xxxFofoFVo 3 o(-x)foffF(-x)o(-x) 5 of(-x)oo(-x)(-x)foV &#zx → †) B3C23G3H3: DCBAVFfxoo 2 xxoFofxFVx 3 o(-x)(-x)ofo(-x)(-x)oo 5 ofFooxFfof &#zx → †) B3C23G3H3i23: DCBAVFfxoo 2 xxoFofxFVo 3 o(-x)(-x)ofo(-x)(-x)o(-x) 5 ofFooxFfoV &#zx → †) B3C23G3H13: DCBAVFf(-x)oo 2 xxoFofxFVx 3 o(-x)(-x)ofo(-x)(-x)oo 5 ofFooxFfof &#zx → †) B3C23G3H13i23: DCBAVFf(-x)oo 2 xxoFofxFVo 3 o(-x)(-x)ofo(-x)(-x)o(-x) 5 ofFooxFfoV &#zx → †) A2C2i2: DCBAVFfxoo 2 (-x)o(-x)FofofV(-x) 3 xxxofoxxox 5 ooxooxxoof &#zx → †) (dead end at D) A2C2H1i2: DCBAVFf(-x)oo 2 (-x)o(-x)FofofV(-x) 3 xxxofoxxox 5 ooxooxxoof &#zx → †) A2C2G32i2: DCBAVFfxoo 2 (-x)o(-x)Fof(-x)fV(-x) 3 xxxofooxox 5 ooxooxFoof &#zx → †) A2C2G32H1i2: DCBAVFf(-x)oo 2 (-x)o(-x)Fof(-x)fV(-x) 3 xxxofooxox 5 ooxooxFoof &#zx → †) A2C24F4G4i2: DCBAVFfxoo 2 (-x)o(-x)FofofV(-x) 3 xxFoffFxox 5 oo(-x)oo(-x)(-x)oof &#zx → †) (dead end at D) A2C24F4G4H1i2: DCBAVFf(-x)oo 2 (-x)o(-x)FofofV(-x) 3 xxFoffFxox 5 oo(-x)oo(-x)(-x)oof &#zx → †) (dead end at D) A2C24F4G32i2: DCBAVFfxoo 2 (-x)o(-x)Fof(-x)fV(-x) 3 xxFoffoxox 5 oo(-x)oo(-x)Foof &#zx → †) (dead end at D) A2C24F4G32H1i2: DCBAVFf(-x)oo 2 (-x)o(-x)Fof(-x)fV(-x) 3 xxFoffoxox 5 oo(-x)oo(-x)Foof &#zx → †) (dead end at D) A2B32C2i2: DCBAVFfxoo 2 (-x)(-x)(-x)FofofV(-x) 3 xoxofoxxox 5 ofxooxxoof &#zx → †) (dead end at D) A2B32C2H1i2: DCBAVFf(-x)oo 2 (-x)(-x)(-x)FofofV(-x) 3 xoxofoxxox 5 ofxooxxoof &#zx → †) (dead end at D) A2B32C2G32i2: DCBAVFfxoo 2 (-x)(-x)(-x)Fof(-x)fV(-x) 3 xoxofooxox 5 ofxooxFoof &#zx → †) (dead end at D) A2B32C2G32H1i2: DCBAVFf(-x)oo 2 (-x)(-x)(-x)Fof(-x)fV(-x) 3 xoxofooxox 5 ofxooxFoof &#zx → †) (dead end at D) A2B32C24F4G4i2: DCBAVFfxoo 2 (-x)(-x)(-x)FofofV(-x) 3 xoFoffFxox 5 of(-x)oo(-x)(-x)oof &#zx → †) A2B32C24F4G4H1i2: DCBAVFf(-x)oo 2 (-x)(-x)(-x)FofofV(-x) 3 xoFoffFxox 5 of(-x)oo(-x)(-x)oof &#zx → †) A2B32C24F4G32i2: DCBAVFfxoo 2 (-x)(-x)(-x)Fof(-x)fV(-x) 3 xoFoffoxox 5 of(-x)oo(-x)Foof &#zx → †) A2B32C24F4G32H1i2: DCBAVFf(-x)oo 2 (-x)(-x)(-x)Fof(-x)fV(-x) 3 xoFoffoxox 5 of(-x)oo(-x)Foof &#zx → †) A23B3G3H3: DCBAVFfxoo 2 oxxFofxFVx 3 (-x)(-x)oofo(-x)(-x)oo 5 ffxooxFfof &#zx → ‡ (f in A) A23B3G3H3i23: DCBAVFfxoo 2 oxxFofxFVo 3 (-x)(-x)oofo(-x)(-x)o(-x) 5 ffxooxFfoV &#zx → ‡ (f in A) A23B3G3H13: DCBAVFf(-x)oo 2 oxxFofxFVx 3 (-x)(-x)oofo(-x)(-x)oo 5 ffxooxFfof &#zx → ‡ (f in A) A23B3G3H13i23: DCBAVFf(-x)oo 2 oxxFofxFVo 3 (-x)(-x)oofo(-x)(-x)o(-x) 5 ffxooxFfoV &#zx → ‡ (f in A) A23B3C4F4G3H3: DCBAVFfxoo 2 oxxFofxFVx 3 (-x)(-x)foff(-x)(-x)oo 5 ff(-x)oo(-x)Ffof &#zx → ‡ (F in A) A23B3C4F4G3H3i23: DCBAVFfxoo 2 oxxFofxFVo 3 (-x)(-x)foff(-x)(-x)o(-x) 5 ff(-x)oo(-x)FfoV &#zx → ‡ (F in A) A23B3C4F4G3H13: DCBAVFf(-x)oo 2 oxxFofxFVx 3 (-x)(-x)foff(-x)(-x)oo 5 ff(-x)oo(-x)Ffof &#zx → ‡ (F in A) A23B3C4F4G3H13i23: DCBAVFf(-x)oo 2 oxxFofxFVo 3 (-x)(-x)foff(-x)(-x)o(-x) 5 ff(-x)oo(-x)FfoV &#zx → ‡ (F in A) A23B3C4F4G4H3: DCBAVFfxoo 2 oxxFofoFVx 3 (-x)(-x)foffF(-x)oo 5 ff(-x)oo(-x)(-x)fof &#zx → ‡ (F in A) A23B3C4F4G4H3i23: DCBAVFfxoo 2 oxxFofoFVo 3 (-x)(-x)foffF(-x)o(-x) 5 ff(-x)oo(-x)(-x)foV &#zx → ‡ (F in A) A23B3C4F4G4H13: DCBAVFf(-x)oo 2 oxxFofoFVx 3 (-x)(-x)foffF(-x)oo 5 ff(-x)oo(-x)(-x)fof &#zx → ‡ (F in A) A23B3C4F4G4H13i23: DCBAVFf(-x)oo 2 oxxFofoFVo 3 (-x)(-x)foffF(-x)o(-x) 5 ff(-x)oo(-x)(-x)foV &#zx → ‡ (F in A) A23B3C23G3H3: DCBAVFfxoo 2 oxoFofxFVx 3 (-x)(-x)(-x)ofo(-x)(-x)oo 5 ffFooxFfof &#zx → ‡ (f in A) A23B3C23G3H3i23: DCBAVFfxoo 2 oxoFofxFVo 3 (-x)(-x)(-x)ofo(-x)(-x)o(-x) 5 ffFooxFfoV &#zx → ‡ (f in A) A23B3C23G3H13: DCBAVFf(-x)oo 2 oxoFofxFVx 3 (-x)(-x)(-x)ofo(-x)(-x)oo 5 ffFooxFfof &#zx → ‡ (f in A) A23B3C23G3H13i23: DCBAVFf(-x)oo 2 oxoFofxFVo 3 (-x)(-x)(-x)ofo(-x)(-x)o(-x) 5 ffFooxFfoV &#zx → ‡ (f in A) A23B3C23F4G3H3: DCBAVFfxoo 2 oxoFofxFVx 3 (-x)(-x)(-x)off(-x)(-x)oo 5 ffFoo(-x)Ffof &#zx → ‡ (F in A) A23B3C23F4G3H3i23: DCBAVFfxoo 2 oxoFofxFVo 3 (-x)(-x)(-x)off(-x)(-x)o(-x) 5 ffFoo(-x)FfoV &#zx → ‡ (F in A) A23B3C23F4G3H13: DCBAVFf(-x)oo 2 oxoFofxFVx 3 (-x)(-x)(-x)off(-x)(-x)oo 5 ffFoo(-x)Ffof &#zx → ‡ (F in A) A23B3C23F4G3H13i23: DCBAVFf(-x)oo 2 oxoFofxFVo 3 (-x)(-x)(-x)off(-x)(-x)o(-x) 5 ffFoo(-x)FfoV &#zx → ‡ (F in A) A23B3C23F4G4H3: DCBAVFfxoo 2 oxoFofoFVx 3 (-x)(-x)(-x)offF(-x)oo 5 ffFoo(-x)(-x)fof &#zx → ‡ (F in A) A23B3C23F4G4H3i23: DCBAVFfxoo 2 oxoFofoFVo 3 (-x)(-x)(-x)offF(-x)o(-x) 5 ffFoo(-x)(-x)foV &#zx → ‡ (F in A) A23B3C23F4G4H13: DCBAVFf(-x)oo 2 oxoFofoFVx 3 (-x)(-x)(-x)offF(-x)oo 5 ffFoo(-x)(-x)fof &#zx → ‡ (F in A) A23B3C23F4G4H13i23: DCBAVFf(-x)oo 2 oxoFofoFVo 3 (-x)(-x)(-x)offF(-x)o(-x) 5 ffFoo(-x)(-x)foV &#zx → ‡ (F in A) A23B32C23G32H3i23: DCBAVFfxoo 2 o(-x)oFof(-x)FVo 3 (-x)o(-x)ofoo(-x)o(-x) 5 ffFooxFfoV &#zx → ‡ (f in A) A23B32C23G32H13i23: DCBAVFf(-x)oo 2 o(-x)oFof(-x)FVo 3 (-x)o(-x)ofoo(-x)o(-x) 5 ffFooxFfoV &#zx → ‡ (f in A) A23B32C23F4G4H3i23: DCBAVFfxoo 2 o(-x)oFofoFVo 3 (-x)o(-x)offF(-x)o(-x) 5 ffFoo(-x)(-x)foV &#zx → ‡ (F in A) A23B32C23F4G4H13i23: DCBAVFf(-x)oo 2 o(-x)oFofoFVo 3 (-x)o(-x)offF(-x)o(-x) 5 ffFoo(-x)(-x)foV &#zx → ‡ (F in A) A23B32C23F4G32H3i23: DCBAVFfxoo 2 o(-x)oFof(-x)FVo 3 (-x)o(-x)offo(-x)o(-x) 5 ffFoo(-x)FfoV &#zx → ‡ (F in A) A23B32C23F4G32H13i23: DCBAVFf(-x)oo 2 o(-x)oFof(-x)FVo 3 (-x)o(-x)offo(-x)o(-x) 5 ffFoo(-x)FfoV &#zx → ‡ (F in A) A23B32C24F4G4H3i23: DCBAVFfxoo 2 o(-x)(-x)FofoFVo 3 (-x)oFoffF(-x)o(-x) 5 ff(-x)oo(-x)(-x)foV &#zx → ‡ (F in A) A23B32C24F4G4H13i23: DCBAVFf(-x)oo 2 o(-x)(-x)FofoFVo 3 (-x)oFoffF(-x)o(-x) 5 ff(-x)oo(-x)(-x)foV &#zx → ‡ (F in A) A23B32C24F4G32H3i23: DCBAVFfxoo 2 o(-x)(-x)Fof(-x)FVo 3 (-x)oFoffo(-x)o(-x) 5 ff(-x)oo(-x)FfoV &#zx → ‡ (F in A) A23B32C24F4G32H13i23: DCBAVFf(-x)oo 2 o(-x)(-x)Fof(-x)FVo 3 (-x)oFoffo(-x)o(-x) 5 ff(-x)oo(-x)FfoV &#zx → ‡ (F in A) | |
Stott expansion: (derived CRFs) |
3:B3G3H3i23: DCBAVFfxoo 2 xxxFofxFVo 3 xoxxFxooxo 5 ofxooxFfoV &#zx → CRF with cell list: 30 ids 120 octs 60 pips 48 pocuroes (J32) 60 squippies (J1) 220 tets 40 thawroes (J92) 2 ties 80 tricues (J3) 120 trips related: ..BAVFfxoo 2 ..xFofxFVo 3 ..xxFxooxo 5 ..xooxFfoV &#zx → CRF with cell list: 2 grids 30 ids 120 octs 24 pecues (J5) 24 pocuroes (J32) 60 squippies (J1) 220 tets 40 thawroes (J92) 120 trips | |
in . o3o5o subsymmetry (up) | ||
additional, not prismatically symmetric combinations of formers: |
none (As there are just 2 symmetrical combinations - rox and that single CRF - which differ in their equatorial sections there is no further combination of resp. hemiglomes either.) | |
using here node marks / (pseudo) edge lengths: F=f+x=ff, V=F+v=2f, A=F+x=f+2x, B=V+x=2f+x=fff, C=2F=2f+2x, D=F+V=3f+x |
in o3o3o *b3o subsymmetry (up) | ||
---|---|---|
Representation: |
Voo|Fxf|ofx 3 xxx|ooo|fff 3 oVo|fFx|xof *b3 ooV|xfF|fxo &#zx (rox) with cyclical layer symmetries: A(134) → B(341) → C(413) → A(134) C(134) → D(341) → E(413) → C(134) G(134) → H(341) → I(413) → G(134) | |
All layers & kaleido-facetings per layer: |
A: V3x3o *b3o → A2: B3(-x)3x *b3x → A23: B3o3(-x) *b3x → A234: B3x3(-x) *b3(-x) → A2342: C3(-x)3o *b3o ↳ A24: B3o3x *b3(-x) → (A243.. = A234..) B: o3x3V *b3o → B2: x3(-x)3B *b3x → B21: (-x)3o3B *b3x → B214: (-x)3x3B *b3(-x) → B2142: o3(-x)3C *b3o ↳ B24: x3o3B *b3(-x) → (B241.. = B214..) C: o3x3o *b3V → C2: x3(-x)3x *b3B → C21: (-x)3o3x *b3B → C213: (-x)3x3(-x) *b3B → C2132: o3(-x)3o *b3C ↳ C23: x3o3(-x) *b3B → (C231.. = C213..) D: F3o3f *b3x → D4: F3x3f *b3(-x) → D42: A3(-x)3F *b3o E: x3o3F *b3f → E1: (-x)3x3F *b3f → E12: o3(-x)3A *b3F F: f3o3x *b3F → F3: f3x3(-x) *b3F → F32: F3(-x)3o *b3A G: o3f3x *b3f → G3: o3F3(-x) *b3f H: f3f3o *b3x → H4: f3F3o *b3(-x) I: x3f3f *b3o → I1: (-x)3F3f *b3o | |
A priori invalid combinations: |
A + B2, B2142, C2, C2132, D42, E12, F32 A2 + B, B214, B24, C, C213, C23, D4, E1, F3, G3, H4 A23 + B214, B24, C2, C21, D4, F, G, H4 A234 + B2, B21, B2142, C2, C21, C2132, D, D42, E12, F, G, H A2342 + B, B214, C, C213, D4, E1, F3 A24 + B2, B21, C213, C23, D, F3, G3, H B + C2, C2132, D42, E12, F32 B2 + C, C21, C213, D4, E1, F3, H4, I1 B21 + C2, C23, D4, E, H4, I B214 + C2, C2132, C23, D, D42, E, E12, F32, H, I B2142 + C, C213, D4, E1, F3 B24 + C21, C213, D, E1, H, I1 C + D42, E12, F32 C2 + D4, E1, F3, G3, I1 C21 + E, F3, G3, I C213 + D42, E, E12, F, F32, G, I C2132 + D4, E1, F3 C23 + E1, F, G, I1 |
D + H4 D4 + E12, F32, H D42 + E1, F3 E + I1 E1 + F32, I E12 + F3 F + G3 F3 + G (all these would provide u edges (→ ‡); thus reducing from 46655 to 175 other potential combinations only) |
Other layer-combinations: |
ABCDEF3G3HI: VooFxfofx3xxxooxFff3oVofF(-x)(-x)of *b3ooVxfFfxo&#zx → ‡ (f in D) ABCDE1F3G3HI1: VooF(-x)fof(-x)3xxxxoxFfF3oVofF(-x)(-x)of *b3ooVxfFfxo&#zx → † ABCD4E1F3G3H4I1: VooF(-x)fof(-x)3xxxxxxFFF3oVofF(-x)(-x)of *b3ooV(-x)fFf(-x)o&#zx → † ABC21DE1FGHI1: Vo(-x)F(-x)fof(-x)3xxooxoffF3oVxfFxxof *b3ooBxfFfxo&#zx → † ABC21D4E1FGH4I1: Vo(-x)F(-x)fof(-x)3xxoxxofFF3oVxfFxxof *b3ooB(-x)fFf(-x)o&#zx → † ABC213DE1F3G3HI1: Vo(-x)F(-x)fof(-x)3xxxoxxFfF3oV(-x)fF(-x)(-x)of *b3ooBxfFfxo&#zx → † ABC213D4E1F3G3H4I1: Vo(-x)F(-x)fof(-x)3xxxxxxFFF3oV(-x)fF(-x)(-x)of *b3ooB(-x)fFf(-x)o&#zx → † ABC23DEF3G3HI: VoxFxfofx3xxoooxFff3oV(-x)fF(-x)(-x)of *b3ooBxfFfxo&#zx → ‡ (f in D) ABC23D4EF3G3H4I: VoxFxfofx3xxoxoxFFf3oV(-x)fF(-x)(-x)of *b3ooB(-x)fFf(-x)o&#zx → † AB21C21DE1FGHI1: V(-x)(-x)F(-x)fof(-x)3xoooxoffF3oBxfFxxof *b3oxBxfFfxo&#zx → † AB21C213DE1F3G3HI1: V(-x)(-x)F(-x)fof(-x)3xoxoxxFfF3oB(-x)fF(-x)(-x)of *b3oxBxfFfxo&#zx → † AB214CD4E1FGH4I1: V(-x)oF(-x)fof(-x)3xxxxxofFF3oBofFxxof *b3o(-x)V(-x)fFf(-x)o&#zx → † AB214CD4E1F3G3H4I1: V(-x)oF(-x)fof(-x)3xxxxxxFFF3oBofF(-x)(-x)of *b3o(-x)V(-x)fFf(-x)o&#zx → † AB214C21D4E1FGH4I1: V(-x)(-x)F(-x)fof(-x)3xxoxxofFF3oBxfFxxof *b3o(-x)B(-x)fFf(-x)o&#zx → † AB214C213D4E1F3G3H4I1: V(-x)(-x)F(-x)fof(-x)3xxxxxxFFF3oB(-x)fF(-x)(-x)of *b3o(-x)B(-x)fFf(-x)o&#zx → † AB24C23D4EF3G3H4I: VxxFxfofx3xooxoxFFf3oB(-x)fF(-x)(-x)of *b3o(-x)B(-x)fFf(-x)o&#zx → † A2B2C2DEFGHI: BxxFxfofx3(-x)(-x)(-x)ooofff3xBxfFxxof *b3xxBxfFfxo&#zx A2B2C2DEF32GHI: BxxFxFofx3(-x)(-x)(-x)oo(-x)fff3xBxfFoxof *b3xxBxfAfxo&#zx → † A2B2C2DE12F32GHI: BxxFoFofx3(-x)(-x)(-x)o(-x)(-x)fff3xBxfAoxof *b3xxBxFAfxo&#zx → † A2B2C2D42E12F32GHI: BxxAoFofx3(-x)(-x)(-x)(-x)(-x)(-x)fff3xBxFAoxof *b3xxBoFAfxo&#zx → † A2B2C2132DEFGHI: BxoFxfofx3(-x)(-x)(-x)ooofff3xBofFxxof *b3xxCxfFfxo&#zx → † A2B2C2132DEF32GHI: BxoFxFofx3(-x)(-x)(-x)oo(-x)fff3xBofFoxof *b3xxCxfAfxo&#zx → † A2B2C2132DE12FGHI: BxoFofofx3(-x)(-x)(-x)o(-x)offf3xBofAxxof *b3xxCxFFfxo&#zx → † A2B2C2132DE12F32GHI: BxoFoFofx3(-x)(-x)(-x)o(-x)(-x)fff3xBofAoxof *b3xxCxFAfxo&#zx → † A2B2C2132D42EFGHI: BxoAxfofx3(-x)(-x)(-x)(-x)oofff3xBoFFxxof *b3xxCofFfxo&#zx → † A2B2C2132D42EF32GHI: BxoAxFofx3(-x)(-x)(-x)(-x)o(-x)fff3xBoFFoxof *b3xxCofAfxo&#zx → † A2B2C2132D42E12FGHI: BxoAofofx3(-x)(-x)(-x)(-x)(-x)offf3xBoFAxxof *b3xxCoFFfxo&#zx → † A2B2C2132D42E12F32GHI: BxoAoFofx3(-x)(-x)(-x)(-x)(-x)(-x)fff3xBoFAoxof *b3xxCoFAfxo&#zx → † A2B21C21DE12FGHI1: B(-x)(-x)Fofof(-x)3(-x)ooo(-x)offF3xBxfAxxof *b3xxBxFFfxo&#zx → † A2B21C21DE12F32GHI1: B(-x)(-x)FoFof(-x)3(-x)ooo(-x)(-x)ffF3xBxfAoxof *b3xxBxFAfxo&#zx → † A2B21C21D42E12FGHI1: B(-x)(-x)Aofof(-x)3(-x)oo(-x)(-x)offF3xBxFAxxof *b3xxBoFFfxo&#zx → † A2B21C21D42E12F32GHI1: B(-x)(-x)AoFof(-x)3(-x)oo(-x)(-x)(-x)ffF3xBxFAoxof *b3xxBoFAfxo&#zx → † A2B21C2132DE12FGHI1: B(-x)oFofof(-x)3(-x)o(-x)o(-x)offF3xBofAxxof *b3xxCxFFfxo&#zx → † A2B21C2132DE12F32GHI1: B(-x)oFoFof(-x)3(-x)o(-x)o(-x)(-x)ffF3xBofAoxof *b3xxCxFAfxo&#zx → † A2B21C2132D42E12FGHI1: B(-x)oAofof(-x)3(-x)o(-x)(-x)(-x)offF3xBoFAxxof *b3xxCoFFfxo&#zx → † A2B21C2132D42E12F32GHI1: B(-x)oAoFof(-x)3(-x)o(-x)(-x)(-x)(-x)ffF3xBoFAoxof *b3xxCoFAfxo&#zx → † A2B2142C2DEFGHI: BoxFxfofx3(-x)(-x)(-x)ooofff3xCxfFxxof *b3xoBxfFfxo&#zx → † A2B2142C2DEF32GHI: BoxFxFofx3(-x)(-x)(-x)oo(-x)fff3xCxfFoxof *b3xoBxfAfxo&#zx → † A2B2142C2DE12FGHI: BoxFofofx3(-x)(-x)(-x)o(-x)offf3xCxfAxxof *b3xoBxFFfxo&#zx → † A2B2142C2DE12F32GHI: BoxFoFofx3(-x)(-x)(-x)o(-x)(-x)fff3xCxfAoxof *b3xoBxFAfxo&#zx → † A2B2142C2D42EFGHI: BoxAxfofx3(-x)(-x)(-x)(-x)oofff3xCxFFxxof *b3xoBofFfxo&#zx → † A2B2142C2D42EF32GHI: BoxAxFofx3(-x)(-x)(-x)(-x)o(-x)fff3xCxFFoxof *b3xoBofAfxo&#zx → † A2B2142C2D42E12FGHI: BoxAofofx3(-x)(-x)(-x)(-x)(-x)offf3xCxFAxxof *b3xoBoFFfxo&#zx → † A2B2142C2D42E12F32GHI: BoxAoFofx3(-x)(-x)(-x)(-x)(-x)(-x)fff3xCxFAoxof *b3xoBoFAfxo&#zx → † A2B2142C21DE12FGHI1: Bo(-x)Fofof(-x)3(-x)(-x)oo(-x)offF3xCxfAxxof *b3xoBxFFfxo&#zx → † A2B2142C21DE12F32GHI1: Bo(-x)FoFof(-x)3(-x)(-x)oo(-x)(-x)ffF3xCxfAoxof *b3xoBxFAfxo&#zx → † A2B2142C21D42E12FGHI1: Bo(-x)Aofof(-x)3(-x)(-x)o(-x)(-x)offF3xCxFAxxof *b3xoBoFFfxo&#zx → † A2B2142C21D42E12F32GHI1: Bo(-x)AoFof(-x)3(-x)(-x)o(-x)(-x)(-x)ffF3xCxFAoxof *b3xoBoFAfxo&#zx → † A2B2142C2132DEFGHI: BooFxfofx3(-x)(-x)(-x)ooofff3xCofFxxof *b3xoCxfFfxo&#zx → † A2B2142C2132DEF32GHI: BooFxFofx3(-x)(-x)(-x)oo(-x)fff3xCofFoxof *b3xoCxfAfxo&#zx → † A2B2142C2132DE12FGHI: BooFofofx3(-x)(-x)(-x)o(-x)offf3xCofAxxof *b3xoCxFFfxo&#zx → † A2B2142C2132DE12FGHI1: BooFofof(-x)3(-x)(-x)(-x)o(-x)offF3xCofAxxof *b3xoCxFFfxo&#zx → † A2B2142C2132DE12F32GHI: BooFoFofx3(-x)(-x)(-x)o(-x)(-x)fff3xCofAoxof *b3xoCxFAfxo&#zx → † A2B2142C2132DE12F32GHI1: BooFoFof(-x)3(-x)(-x)(-x)o(-x)(-x)ffF3xCofAoxof *b3xoCxFAfxo&#zx → † A2B2142C2132D42EFGHI: BooAxfofx3(-x)(-x)(-x)(-x)oofff3xCoFFxxof *b3xoCofFfxo&#zx → † A2B2142C2132D42EF32GHI: BooAxFofx3(-x)(-x)(-x)(-x)o(-x)fff3xCoFFoxof *b3xoCofAfxo&#zx → † A2B2142C2132D42E12FGHI: BooAofofx3(-x)(-x)(-x)(-x)(-x)offf3xCoFAxxof *b3xoCoFFfxo&#zx → † A2B2142C2132D42E12FGHI1: BooAofof(-x)3(-x)(-x)(-x)(-x)(-x)offF3xCoFAxxof *b3xoCoFFfxo&#zx → † A2B2142C2132D42E12F32GHI: BooAoFofx3(-x)(-x)(-x)(-x)(-x)(-x)fff3xCoFAoxof *b3xoCoFAfxo&#zx → † A2B2142C2132D42E12F32GHI1: BooAoFof(-x)3(-x)(-x)(-x)(-x)(-x)(-x)ffF3xCoFAoxof *b3xoCoFAfxo&#zx → † A23BC213DE1F3G3HI1: Bo(-x)F(-x)fof(-x)3oxxxoxFfF3(-x)V(-x)fF(-x)(-x)of *b3xoBxfFfxo&#zx → † A23B2C2132DEF32G3HI: BxoFxFofx3o(-x)(-x)oo(-x)Fff3(-x)BofFo(-x)of *b3xxCxfAfxo&#zx → † A23B2C2132DE12F32G3HI: BxoFoFofx3o(-x)(-x)o(-x)(-x)Fff3(-x)BofAo(-x)of *b3xxCxFAfxo&#zx → † A23B2C2132D42EF32G3HI: BxoAxFofx3o(-x)(-x)(-x)o(-x)Fff3(-x)BoFFo(-x)of *b3xxCofAfxo&#zx → † A23B2C2132D42E12F32G3HI: BxoAoFofx3o(-x)(-x)(-x)(-x)(-x)Fff3(-x)BoFAo(-x)of *b3xxCoFAfxo&#zx → † A23B21C213DE1F3G3HI1: B(-x)(-x)F(-x)fof(-x)3ooxoxxFfF3(-x)B(-x)fF(-x)(-x)of *b3xxBxfFfxo&#zx → † A23B21C2132DE12F32G3HI1: B(-x)oFoFof(-x)3oo(-x)o(-x)(-x)FfF3(-x)BofAo(-x)of *b3xxCxFAfxo&#zx → † A23B21C2132D42E12F32G3HI1: B(-x)oAoFof(-x)3oo(-x)(-x)(-x)(-x)FfF3(-x)BoFAo(-x)of *b3xxCoFAfxo&#zx → † A23B2142C2132DEF32G3HI: BooFxFofx3o(-x)(-x)oo(-x)Fff3(-x)CofFo(-x)of *b3xoCxfAfxo&#zx → † A23B2142C2132DE12F32G3HI: BooFoFofx3o(-x)(-x)o(-x)(-x)Fff3(-x)CofAo(-x)of *b3xoCxFAfxo&#zx → † A23B2142C2132DE12F32G3HI1: BooFoFof(-x)3o(-x)(-x)o(-x)(-x)FfF3(-x)CofAo(-x)of *b3xoCxFAfxo&#zx → † A23B2142C2132D42EF32G3HI: BooAxFofx3o(-x)(-x)(-x)o(-x)Fff3(-x)CoFFo(-x)of *b3xoCofAfxo&#zx → † A23B2142C2132D42E12F32G3HI: BooAoFofx3o(-x)(-x)(-x)(-x)(-x)Fff3(-x)CoFAo(-x)of *b3xoCoFAfxo&#zx → † A23B2142C2132D42E12F32G3HI1: BooAoFof(-x)3o(-x)(-x)(-x)(-x)(-x)FfF3(-x)CoFAo(-x)of *b3xoCoFAfxo&#zx → † A23B2142C23DEF32G3HI: BoxFxFofx3o(-x)ooo(-x)Fff3(-x)C(-x)fFo(-x)of *b3xoBxfAfxo&#zx → † A23B2142C23DE12F32G3HI: BoxFoFofx3o(-x)oo(-x)(-x)Fff3(-x)C(-x)fAo(-x)of *b3xoBxFAfxo&#zx → † A23B2142C23D42EF32G3HI: BoxAxFofx3o(-x)o(-x)o(-x)Fff3(-x)C(-x)FFo(-x)of *b3xoBofAfxo&#zx → † A23B2142C23D42E12F32G3HI: BoxAoFofx3o(-x)o(-x)(-x)(-x)Fff3(-x)C(-x)FAo(-x)of *b3xoBoFAfxo&#zx → † A234BC213D4E1F3G3H4I1: Bo(-x)F(-x)fof(-x)3xxxxxxFFF3(-x)V(-x)fF(-x)(-x)of *b3(-x)oB(-x)fFf(-x)o&#zx → † A234B214CD4E1F3G3H4I1: B(-x)oF(-x)fof(-x)3xxxxxxFFF3(-x)BofF(-x)(-x)of *b3(-x)(-x)V(-x)fFf(-x)o&#zx → † A234B214C213D4E1F3G3H4I1: B(-x)(-x)F(-x)fof(-x)3xxxxxxFFF3(-x)B(-x)fF(-x)(-x)of *b3(-x)(-x)B(-x)fFf(-x)o&#zx → † A2342B2C2132DEFGHI: CxoFxfofx3(-x)(-x)(-x)ooofff3oBofFxxof *b3oxCxfFfxo&#zx → † A2342B2C2132DEF32GHI: CxoFxFofx3(-x)(-x)(-x)oo(-x)fff3oBofFoxof *b3oxCxfAfxo&#zx → † A2342B2C2132DEF32G3HI: CxoFxFofx3(-x)(-x)(-x)oo(-x)Fff3oBofFo(-x)of *b3oxCxfAfxo&#zx → † A2342B2C2132DE12FGHI: CxoFofofx3(-x)(-x)(-x)o(-x)offf3oBofAxxof *b3oxCxFFfxo&#zx → † A2342B2C2132DE12F32GHI: CxoFoFofx3(-x)(-x)(-x)o(-x)(-x)fff3oBofAoxof *b3oxCxFAfxo&#zx → † A2342B2C2132DE12F32G3HI: CxoFoFofx3(-x)(-x)(-x)o(-x)(-x)Fff3oBofAo(-x)of *b3oxCxFAfxo&#zx → † A2342B2C2132D42EFGHI: CxoAxfofx3(-x)(-x)(-x)(-x)oofff3oBoFFxxof *b3oxCofFfxo&#zx → † A2342B2C2132D42EF32GHI: CxoAxFofx3(-x)(-x)(-x)(-x)o(-x)fff3oBoFFoxof *b3oxCofAfxo&#zx → † A2342B2C2132D42EF32G3HI: CxoAxFofx3(-x)(-x)(-x)(-x)o(-x)Fff3oBoFFo(-x)of *b3oxCofAfxo&#zx → † A2342B2C2132D42E12FGHI: CxoAofofx3(-x)(-x)(-x)(-x)(-x)offf3oBoFAxxof *b3oxCoFFfxo&#zx → † A2342B2C2132D42E12F32GHI: CxoAoFofx3(-x)(-x)(-x)(-x)(-x)(-x)fff3oBoFAoxof *b3oxCoFAfxo&#zx → † A2342B2C2132D42E12F32G3HI: CxoAoFofx3(-x)(-x)(-x)(-x)(-x)(-x)Fff3oBoFAo(-x)of *b3oxCoFAfxo&#zx → † A2342B21C21DE12FGHI1: C(-x)(-x)Fofof(-x)3(-x)ooo(-x)offF3oBxfAxxof *b3oxBxFFfxo&#zx → † A2342B21C21DE12F32GHI1: C(-x)(-x)FoFof(-x)3(-x)ooo(-x)(-x)ffF3oBxfAoxof *b3oxBxFAfxo&#zx → † A2342B21C21D42E12FGHI1: C(-x)(-x)Aofof(-x)3(-x)oo(-x)(-x)offF3oBxFAxxof *b3oxBoFFfxo&#zx → † A2342B21C21D42E12F32GHI1: C(-x)(-x)AoFof(-x)3(-x)oo(-x)(-x)(-x)ffF3oBxFAoxof *b3oxBoFAfxo&#zx → † A2342B21C2132DE12FGHI1: C(-x)oFofof(-x)3(-x)o(-x)o(-x)offF3oBofAxxof *b3oxCxFFfxo&#zx → † A2342B21C2132DE12F32GHI1: C(-x)oFoFof(-x)3(-x)o(-x)o(-x)(-x)ffF3oBofAoxof *b3oxCxFAfxo&#zx → † A2342B21C2132DE12F32G3HI1: C(-x)oFoFof(-x)3(-x)o(-x)o(-x)(-x)FfF3oBofAo(-x)of *b3oxCxFAfxo&#zx → † A2342B21C2132D42E12FGHI1: C(-x)oAofof(-x)3(-x)o(-x)(-x)(-x)offF3oBoFAxxof *b3oxCoFFfxo&#zx → † A2342B21C2132D42E12F32GHI1: C(-x)oAoFof(-x)3(-x)o(-x)(-x)(-x)(-x)ffF3oBoFAoxof *b3oxCoFAfxo&#zx → † A2342B21C2132D42E12F32G3HI1: C(-x)oAoFof(-x)3(-x)o(-x)(-x)(-x)(-x)FfF3oBoFAo(-x)of *b3oxCoFAfxo&#zx → † A2342B2142C2DEFGHI: CoxFxfofx3(-x)(-x)(-x)ooofff3oCxfFxxof *b3ooBxfFfxo&#zx → † A2342B2142C2DEF32GHI: CoxFxFofx3(-x)(-x)(-x)oo(-x)fff3oCxfFoxof *b3ooBxfAfxo&#zx → † A2342B2142C2DE12FGHI: CoxFofofx3(-x)(-x)(-x)o(-x)offf3oCxfAxxof *b3ooBxFFfxo&#zx → † A2342B2142C2DE12F32GHI: CoxFoFofx3(-x)(-x)(-x)o(-x)(-x)fff3oCxfAoxof *b3ooBxFAfxo&#zx → † A2342B2142C2D42EFGHI: CoxAxfofx3(-x)(-x)(-x)(-x)oofff3oCxFFxxof *b3ooBofFfxo&#zx → † A2342B2142C2D42EFGH4I: CoxAxfofx3(-x)(-x)(-x)(-x)oofFf3oCxFFxxof *b3ooBofFf(-x)o&#zx → † A2342B2142C2D42EF32GHI: CoxAxFofx3(-x)(-x)(-x)(-x)o(-x)fff3oCxFFoxof *b3ooBofAfxo&#zx → † A2342B2142C2D42EF32GH4I: CoxAxFofx3(-x)(-x)(-x)(-x)o(-x)fFf3oCxFFoxof *b3ooBofAf(-x)o&#zx → † A2342B2142C2D42E12FGHI: CoxAofofx3(-x)(-x)(-x)(-x)(-x)offf3oCxFAxxof *b3ooBoFFfxo&#zx → † A2342B2142C2D42E12FGH4I: CoxAofofx3(-x)(-x)(-x)(-x)(-x)ofFf3oCxFAxxof *b3ooBoFFf(-x)o&#zx → † A2342B2142C2D42E12F32GHI: CoxAoFofx3(-x)(-x)(-x)(-x)(-x)(-x)fff3oCxFAoxof *b3ooBoFAfxo&#zx → † A2342B2142C2D42E12F32GH4I: CoxAoFofx3(-x)(-x)(-x)(-x)(-x)(-x)fFf3oCxFAoxof *b3ooBoFAf(-x)o&#zx → † A2342B2142C21DE12FGHI1: Co(-x)Fofof(-x)3(-x)(-x)oo(-x)offF3oCxfAxxof *b3ooBxFFfxo&#zx → † A2342B2142C21DE12F32GHI1: Co(-x)FoFof(-x)3(-x)(-x)oo(-x)(-x)ffF3oCxfAoxof *b3ooBxFAfxo&#zx → † A2342B2142C21D42E12FGHI1: Co(-x)Aofof(-x)3(-x)(-x)o(-x)(-x)offF3oCxFAxxof *b3ooBoFFfxo&#zx → † A2342B2142C21D42E12FGH4I1: Co(-x)Aofof(-x)3(-x)(-x)o(-x)(-x)ofFF3oCxFAxxof *b3ooBoFFf(-x)o&#zx → † A2342B2142C21D42E12F32GHI1: Co(-x)AoFof(-x)3(-x)(-x)o(-x)(-x)(-x)ffF3oCxFAoxof *b3ooBoFAfxo&#zx → † A2342B2142C21D42E12F32GH4I1: Co(-x)AoFof(-x)3(-x)(-x)o(-x)(-x)(-x)fFF3oCxFAoxof *b3ooBoFAf(-x)o&#zx → † A2342B2142C2132DEFGHI: CooFxfofx3(-x)(-x)(-x)ooofff3oCofFxxof *b3ooCxfFfxo&#zx → † A2342B2142C2132DEF32GHI: CooFxFofx3(-x)(-x)(-x)oo(-x)fff3oCofFoxof *b3ooCxfAfxo&#zx → † A2342B2142C2132DEF32G3HI: CooFxFofx3(-x)(-x)(-x)oo(-x)Fff3oCofFo(-x)of *b3ooCxfAfxo&#zx → † A2342B2142C2132DE12FGHI: CooFofofx3(-x)(-x)(-x)o(-x)offf3oCofAxxof *b3ooCxFFfxo&#zx → † A2342B2142C2132DE12FGHI1: CooFofof(-x)3(-x)(-x)(-x)o(-x)offF3oCofAxxof *b3ooCxFFfxo&#zx → † A2342B2142C2132DE12F32GHI: CooFoFofx3(-x)(-x)(-x)o(-x)(-x)fff3oCofAoxof *b3ooCxFAfxo&#zx → † A2342B2142C2132DE12F32GHI1: CooFoFof(-x)3(-x)(-x)(-x)o(-x)(-x)ffF3oCofAoxof *b3ooCxFAfxo&#zx → † A2342B2142C2132DE12F32G3HI: CooFoFofx3(-x)(-x)(-x)o(-x)(-x)Fff3oCofAo(-x)of *b3ooCxFAfxo&#zx → † A2342B2142C2132DE12F32G3HI1: CooFoFof(-x)3(-x)(-x)(-x)o(-x)(-x)FfF3oCofAo(-x)of *b3ooCxFAfxo&#zx → † A2342B2142C2132D42EFGHI: CooAxfofx3(-x)(-x)(-x)(-x)oofff3oCoFFxxof *b3ooCofFfxo&#zx → † A2342B2142C2132D42EFGH4I: CooAxfofx3(-x)(-x)(-x)(-x)oofFf3oCoFFxxof *b3ooCofFf(-x)o&#zx → † A2342B2142C2132D42EF32GHI: CooAxFofx3(-x)(-x)(-x)(-x)o(-x)fff3oCoFFoxof *b3ooCofAfxo&#zx → † A2342B2142C2132D42EF32GH4I: CooAxFofx3(-x)(-x)(-x)(-x)o(-x)fFf3oCoFFoxof *b3ooCofAf(-x)o&#zx → † A2342B2142C2132D42EF32G3HI: CooAxFofx3(-x)(-x)(-x)(-x)o(-x)Fff3oCoFFo(-x)of *b3ooCofAfxo&#zx → † A2342B2142C2132D42EF32G3H4I: CooAxFofx3(-x)(-x)(-x)(-x)o(-x)FFf3oCoFFo(-x)of *b3ooCofAf(-x)o&#zx → † A2342B2142C2132D42E12FGHI: CooAofofx3(-x)(-x)(-x)(-x)(-x)offf3oCoFAxxof *b3ooCoFFfxo&#zx → † A2342B2142C2132D42E12FGHI1: CooAofof(-x)3(-x)(-x)(-x)(-x)(-x)offF3oCoFAxxof *b3ooCoFFfxo&#zx → † A2342B2142C2132D42E12FGH4I: CooAofofx3(-x)(-x)(-x)(-x)(-x)ofFf3oCoFAxxof *b3ooCoFFf(-x)o&#zx → † A2342B2142C2132D42E12FGH4I1: CooAofof(-x)3(-x)(-x)(-x)(-x)(-x)ofFF3oCoFAxxof *b3ooCoFFf(-x)o&#zx → † A2342B2142C2132D42E12F32GHI: CooAoFofx3(-x)(-x)(-x)(-x)(-x)(-x)fff3oCoFAoxof *b3ooCoFAfxo&#zx → † A2342B2142C2132D42E12F32GHI1: CooAoFof(-x)3(-x)(-x)(-x)(-x)(-x)(-x)ffF3oCoFAoxof *b3ooCoFAfxo&#zx → † A2342B2142C2132D42E12F32GH4I: CooAoFofx3(-x)(-x)(-x)(-x)(-x)(-x)fFf3oCoFAoxof *b3ooCoFAf(-x)o&#zx → † A2342B2142C2132D42E12F32GH4I1: CooAoFof(-x)3(-x)(-x)(-x)(-x)(-x)(-x)fFF3oCoFAoxof *b3ooCoFAf(-x)o&#zx → † A2342B2142C2132D42E12F32G3HI: CooAoFofx3(-x)(-x)(-x)(-x)(-x)(-x)Fff3oCoFAo(-x)of *b3ooCoFAfxo&#zx → † A2342B2142C2132D42E12F32G3HI1: CooAoFof(-x)3(-x)(-x)(-x)(-x)(-x)(-x)FfF3oCoFAo(-x)of *b3ooCoFAfxo&#zx → † A2342B2142C2132D42E12F32G3H4I: CooAoFofx3(-x)(-x)(-x)(-x)(-x)(-x)FFf3oCoFAo(-x)of *b3ooCoFAf(-x)o&#zx → † A2342B2142C2132D42E12F32G3H4I1: CooAoFof(-x)3(-x)(-x)(-x)(-x)(-x)(-x)FFF3oCoFAo(-x)of *b3ooCoFAf(-x)o&#zx → † A2342B2142C23DEF32G3HI: CoxFxFofx3(-x)(-x)ooo(-x)Fff3oC(-x)fFo(-x)of *b3ooBxfAfxo&#zx → † A2342B2142C23DE12F32G3HI: CoxFoFofx3(-x)(-x)oo(-x)(-x)Fff3oC(-x)fAo(-x)of *b3ooBxFAfxo&#zx → † A2342B2142C23D42EF32G3HI: CoxAxFofx3(-x)(-x)o(-x)o(-x)Fff3oC(-x)FFo(-x)of *b3ooBofAfxo&#zx → † A2342B2142C23D42EF32G3H4I: CoxAxFofx3(-x)(-x)o(-x)o(-x)FFf3oC(-x)FFo(-x)of *b3ooBofAf(-x)o&#zx → † A2342B2142C23D42E12F32G3HI: CoxAoFofx3(-x)(-x)o(-x)(-x)(-x)Fff3oC(-x)FAo(-x)of *b3ooBoFAfxo&#zx → † A2342B2142C23D42E12F32G3H4I: CoxAoFofx3(-x)(-x)o(-x)(-x)(-x)FFf3oC(-x)FAo(-x)of *b3ooBoFAf(-x)o&#zx → † A2342B24C2132D42EFGH4I: CxoAxfofx3(-x)o(-x)(-x)oofFf3oBoFFxxof *b3o(-x)CofFf(-x)o&#zx → † A2342B24C2132D42EF32GH4I: CxoAxFofx3(-x)o(-x)(-x)o(-x)fFf3oBoFFoxof *b3o(-x)CofAf(-x)o&#zx → † A2342B24C2132D42EF32G3H4I: CxoAxFofx3(-x)o(-x)(-x)o(-x)FFf3oBoFFo(-x)of *b3o(-x)CofAf(-x)o&#zx → † A2342B24C2132D42E12FGH4I: CxoAofofx3(-x)o(-x)(-x)(-x)ofFf3oBoFAxxof *b3o(-x)CoFFf(-x)o&#zx → † A2342B24C2132D42E12F32GH4I: CxoAoFofx3(-x)o(-x)(-x)(-x)(-x)fFf3oBoFAoxof *b3o(-x)CoFAf(-x)o&#zx → † A2342B24C2132D42E12F32G3H4I: CxoAoFofx3(-x)o(-x)(-x)(-x)(-x)FFf3oBoFAo(-x)of *b3o(-x)CoFAf(-x)o&#zx → † A24B214CD4E1FGH4I1: B(-x)oF(-x)fof(-x)3oxxxxofFF3xBofFxxof *b3(-x)(-x)V(-x)fFf(-x)o&#zx → † A24B214C21D4E1FGH4I1: B(-x)(-x)F(-x)fof(-x)3oxoxxofFF3xBxfFxxof *b3(-x)(-x)B(-x)fFf(-x)o&#zx → † A24B2142C2D42EFGH4I: BoxAxfofx3o(-x)(-x)(-x)oofFf3xCxFFxxof *b3(-x)oBofFf(-x)o&#zx → † A24B2142C2D42EF32GH4I: BoxAxFofx3o(-x)(-x)(-x)o(-x)fFf3xCxFFoxof *b3(-x)oBofAf(-x)o&#zx → † A24B2142C2D42E12FGH4I: BoxAofofx3o(-x)(-x)(-x)(-x)ofFf3xCxFAxxof *b3(-x)oBoFFf(-x)o&#zx → † A24B2142C2D42E12F32GH4I: BoxAoFofx3o(-x)(-x)(-x)(-x)(-x)fFf3xCxFAoxof *b3(-x)oBoFAf(-x)o&#zx → † A24B2142C21D42E12FGH4I1: Bo(-x)Aofof(-x)3o(-x)o(-x)(-x)ofFF3xCxFAxxof *b3(-x)oBoFFf(-x)o&#zx → † A24B2142C21D42E12F32GH4I1: Bo(-x)AoFof(-x)3o(-x)o(-x)(-x)(-x)fFF3xCxFAoxof *b3(-x)oBoFAf(-x)o&#zx → † A24B2142C2132D42EFGH4I: BooAxfofx3o(-x)(-x)(-x)oofFf3xCoFFxxof *b3(-x)oCofFf(-x)o&#zx → † A24B2142C2132D42EF32GH4I: BooAxFofx3o(-x)(-x)(-x)o(-x)fFf3xCoFFoxof *b3(-x)oCofAf(-x)o&#zx → † A24B2142C2132D42E12FGH4I: BooAofofx3o(-x)(-x)(-x)(-x)ofFf3xCoFAxxof *b3(-x)oCoFFf(-x)o&#zx → † A24B2142C2132D42E12FGH4I1: BooAofof(-x)3o(-x)(-x)(-x)(-x)ofFF3xCoFAxxof *b3(-x)oCoFFf(-x)o&#zx → † A24B2142C2132D42E12F32GH4I: BooAoFofx3o(-x)(-x)(-x)(-x)(-x)fFf3xCoFAoxof *b3(-x)oCoFAf(-x)o&#zx → † A24B2142C2132D42E12F32GH4I1: BooAoFof(-x)3o(-x)(-x)(-x)(-x)(-x)fFF3xCoFAoxof *b3(-x)oCoFAf(-x)o&#zx → † | |
Stott expansion: (derived CRFs) |
2:A2B2C2DEFGHI: Bxx|Fxf|ofx 3 ooo|xxx|FFF 3 xBx|fFx|xof *b3 xxB|xfF|fxo &#zx → CRF with cell list: 24 coes 24 ikes 192 oct 144 pip 288 squippies (J1) 96 thawroes (J92) 96 tricues (J3) 96 trip | |
using here node marks / (pseudo) edge lengths: F=f+x=ff, V=F+v=2f, A=F+x=f+2x, B=V+x=2f+x=fff, C=2F=2f+2x, R=A+x=f+3x, S=C+x=2f+3x |
in o5o2o5o subsymmetry (up) | ||
---|---|---|
Representation: |
Aooo|Fxox|Vofo|Fofx|xf 5 oAoo|xFxo|oVof|oFxf|xf 2 ooAo|xoFx|ofVo|xfFo|fx 5 oooA|oxxF|fooV|fxoF|fx &#zx (rox) with cyclical layer symmetries: A(1234) → B(2143) → C(4312) → D(3421) → A(1234) E(1234) → F(2143) → G(4312) → H(3421) → E(1234) I(1234) → J(2143) → K(4312) → L(3421) → I(1234) M(1234) → N(2143) → O(4312) → P(3421) → M(1234) Q(1234) → Q(2143) → R(4312) → R(3421) → Q(1234) | |
All layers & kaleido-facetings per layer: |
A: A5o o5o B: o5A o5o C: o5o A5o D: o5o o5A E: F5x x5o → E2: B5(-x) x5o → E23: B5(-x) (-x)5f ↳ E3: F5x (-x)5f F: x5F o5x → F1: (-x)5B o5x → F14: (-x)5B f5(-x) ↳ F4: x5F f5(-x) G: o5x F5x → G2: f5(-x) F5x → G24: f5(-x) B5(-x) ↳ G4: o5x B5(-x) H: x5o x5F → H1: (-x)5f x5F → H13: (-x)5f (-x)5B ↳ H3: x5o (-x)5B |
I: V5o o5f J: o5V f5o K: f5o V5o L: o5f o5V M: F5o x5f → M3: F5o (-x)5V N: o5F f5x → N4: o5F V5(-x) O: f5x F5o → O2: V5(-x) F5o P: x5f o5F → P1: (-x)5V o5F Q: x5x f5f → Q1: (-x)5F f5f ↳ Q2: F5(-x) f5f R: f5f x5x → R3: f5f (-x)5F ↳ R4: f5f F5(-x) |
A priori invalid combinations: |
E + G2,G24,H3,H13,M3,O2,Q2,R3 E2 + G,G4,H3,H13,M3,O,Q,R3 E3 + G2,G24,H,H1,M,O2,Q2,R E23 + G,G4,H,H1,M,O,Q,R F + G4,G24,H1,H13,N4,P1,Q1,R4 F1 + G4,G24,H,H3,N4,P,Q,R4 F4 + G,G2,H1,H13,N,P1,Q1,R F14 + G,G2,H,H3,N,P,Q,R G + N4,O2,Q2,R4 G2 + N4,O,Q,R4 G4 + N,O2,Q2,R G24 + N,O,Q,R |
H + M3,P1,Q1,R3 H1 + M3,P,Q,R3 H3 + M,P1,Q1,R H13 + M,P,Q,R M + R3 M3 + R N + R4 N4 + R O + Q2 O2 + Q P + Q1 P1 + Q |
Other layer-combinations: |
E2F1G2H1MNO2P1Q1R: AoooB(-x)f(-x)VofoFoV(-x)(-x)f 5 oAoo(-x)B(-x)foVofoF(-x)VFf 2 ooAoxoFxofVoxfFofx 5 oooAoxxFfooVfxoFfx &#zx E23F14G24H13M3N4O2P1Q1R3: AoooB(-x)f(-x)VofoFoV(-x)(-x)f 5 oAoo(-x)B(-x)foVofoF(-x)VFf 2 ooAo(-x)fB(-x)ofVo(-x)VFof(-x) 5 oooAf(-x)(-x)BfooVV(-x)oFfF &#zx | |
Stott expansion: (derived potential CRFs) |
12:E2F1G2H1MNO2P1Q1R: RxxxCoFoBxFxAxBooF 5 xRxxoCoFxBxFxAoBAF 2 ooAoxoFxofVoxfFofx 5 oooAoxxFfooVfxoFfx &#zx → ‡ (F in G) | |
1234:E23F14G24H13M3N4O2P1Q1R3: RxxxCoFoBxFxAxBooF 5 xRxxoCoFxBxFxAoBAF 2 xxRxoFCoxFBxoBAxFo 5 xxxRFooCFxxBBoxAFA &#zx → ‡ (F in G) | ||
using here node marks / (pseudo) edge lengths: F=f+x=ff, V=F+v=2f, A=F+x=f+2x, B=V+x=2f+x=fff, C=2F=2f+2x, R=A+x=f+3x |
in o3o2o3o subsymmetry (up) | ||
---|---|---|
Representation: |
oxoxofxfoFfoVxFfFxVoBoBFfAxBFVoCfB 3 xoxofofxFofVoFxFfVxBoBoFAfBxVFCoBf 2 fBCoVFBxfAFBooBVxfFFxoVfFoxfofoxxo 3 BfoCFVxBAfFoBBoxVFfxFVofoFfxfoxoox &#zx (rox) with cyclical layer symmetries: A(1234) → a(3421) → B(2143) → b(4312) → A(1234) C(1234) → d(3421) → D(2143) → c(4312) → D(1234) E(1234) → f(3421) → F(2143) → e(4312) → E(1234) G(1234) → h(3421) → H(2143) → g(4312) → G(1234) I(1234) → i(3421) → J(2143) → j(4312) → I(1234) K(1234) → k(3421) → K(2143) L(1234) → m(3421) → M(2143) → l(4312) → L(1234) N(1234) → n(3421) → O(2143) → o(4312) → N(1234) P(1234) → q(3421) → Q(2143) → p(4312) → P(1234) | |
All layers & kaleido-facetings per layer: |
A: o3x f3B → A2: x 3(-x) f 3 B → A21: (-x)3 o f 3 B B: x3o B3f → B1: (-x)3 x B 3 f → B12: o 3(-x) B 3 f C: o3x C3o → C2: x 3(-x) C 3 o → C21: (-x)3 o C 3 o D: x3o o3C → D1: (-x)3 x o 3 C → D12: o 3(-x) o 3 C E: o3f V3F F: f3o F3V G: x3f B3x → G1: (-x)3 F B 3 x → G14: (-x)3 F C 3(-x) ↳ G4: x 3 f C 3(-x) H: f3x x3B → H2: F 3(-x) x 3 B → H23: F 3(-x)(-x)3 C ↳ H3: f 3 x (-x)3 C I: o3F f3A J: F3o A3f K: f3f F3F L: o3V B3o M: V3o o3B N: x3F o3B → N1: (-x)3 A o 3 B O: F3x B3o → O2: A 3(-x) B 3 o P: f3F V3x → P4: f 3 F B 3(-x) Q: F3f x3V → Q3: F 3 f (-x)3 B |
q: x3V f3F → q1: (-x)3 B f 3 F p: V3x F3f → p2: B 3(-x) F 3 f o: o3B F3x → o4: o 3 B A 3(-x) n: B3o x3F → n3: B 3 o (-x)3 A m: o3B o3V l: B3o V3o k: F3F f3f j: f3A F3o i: A3f o3F h: x3B x3f → h1: (-x)3 C x 3 f → h13: (-x)3 C (-x)3 F ↳ h3: x 3 B (-x)3 F g: B3x f3x → g2: C 3(-x) f 3 x → g24: C 3(-x) F 3(-x) ↳ g4: B 3 x F 3(-x) f: F3V o3f e: V3F f3o d: o3C o3x → d4: o 3 C x 3(-x) → d43: o 3 C (-x)3 o c: C3o x3o → c3: C 3 o (-x)3 x → c34: C 3 o o 3(-x) b: f3B x3o → b3: f 3 B (-x)3 x → b34: f 3 B o 3(-x) a: B3f o3x → a4: B 3 f x 3(-x) → a43: B 3 f (-x)3 o |
A priori invalid combinations: |
none of A2, B, C2, D, G, G4, N, q, h, h3 shall combine with any of A21, B1, C21, D1, G1, G14, N1, q1, h1, h13 (else asking for u edges finally) none of A, B1, C, D1, H, H3, O, p, g, g4 shall combine with any of A2, B12, C2, D12, H2, H23, O2, p2, g2, g24 (else asking for u edges finally) none of H, H2, Q, n, h, h1, d4, c, b, a4 shall combine with any of H23, H3, Q3, n3, h13, h3, d43, c3, b3, a43 (else asking for u edges finally) none of G, G1, P, o, g, g2, d, c3, b3, a shall combine with any of G14, G4, P4, o4, g24, g4, d4, c34, b34, a4 (else asking for u edges finally) | |
Other layer-combinations: |
A2C2H2O2p2g2: xxxxofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 (-x)o(-x)ofof(-x)FofVoF(-x)FfV(-x)BoBoFAfB(-x)VFCoBf 2 fBCoVFBxfAFBooBVxfFFxoVfFoxfofoxxo 3 BfoCFVxBAfFoBBoxVFfxFVofoFfxfoxoox A2B12C2H2O2p2g2: xoxxofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 (-x)(-x)(-x)ofof(-x)FofVoF(-x)FfV(-x)BoBoFAfB(-x)VFCoBf 2 fBCoVFBxfAFBooBVxfFFxoVfFoxfofoxxo 3 BfoCFVxBAfFoBBoxVFfxFVofoFfxfoxoox A2C2D12H2O2p2g2: xxxoofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 (-x)o(-x)(-x)fof(-x)FofVoF(-x)FfV(-x)BoBoFAfB(-x)VFCoBf 2 fBCoVFBxfAFBooBVxfFFxoVfFoxfofoxxo 3 BfoCFVxBAfFoBBoxVFfxFVofoFfxfoxoox A2B12C2D12H2O2p2g2: xoxoofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 (-x)(-x)(-x)(-x)fof(-x)FofVoF(-x)FfV(-x)BoBoFAfB(-x)VFCoBf 2 fBCoVFBxfAFBooBVxfFFxoVfFoxfofoxxo 3 BfoCFVxBAfFoBBoxVFfxFVofoFfxfoxoox A2C2G4H2O2P4p2o4g24d4a4: xxxxofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 (-x)o(-x)ofof(-x)FofVoF(-x)FfV(-x)BoBoFAfB(-x)VFCoBf 2 fBCoVFCxfAFBooBBxfFAxoVfFoxFofxxxx 3 BfoCFV(-x)BAfFoBBo(-x)VFf(-x)FVofoFf(-x)fo(-x)oo(-x) A2B12C2G4H2O2P4p2o4g24d4a4: xoxxofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 (-x)(-x)(-x)ofof(-x)FofVoF(-x)FfV(-x)BoBoFAfB(-x)VFCoBf 2 fBCoVFCxfAFBooBBxfFAxoVfFoxFofxxxx 3 BfoCFV(-x)BAfFoBBo(-x)VFf(-x)FVofoFf(-x)fo(-x)oo(-x) A2B12C2H23O2Q3p2n3h3g2c3b3: xoxxofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 (-x)(-x)(-x)ofof(-x)FofVoF(-x)FfV(-x)BoBoFAfB(-x)VFCoBf 2 fBCoVFB(-x)fAFBooBV(-x)fFF(-x)oVfFo(-x)fofo(-x)(-x)o 3 BfoCFVxCAfFoBBoxBFfxAVofoFFxfoxxxx A2C2D12G4H2O2P4p2o4g24d4a4: xxxoofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 (-x)o(-x)(-x)fof(-x)FofVoF(-x)FfV(-x)BoBoFAfB(-x)VFCoBf 2 fBCoVFCxfAFBooBBxfFAxoVfFoxFofxxxx 3 BfoCFV(-x)BAfFoBBo(-x)VFf(-x)FVofoFf(-x)fo(-x)oo(-x) A2C2D12H23O2Q3p2n3h3g2c3b3: xxxoofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 (-x)o(-x)(-x)fof(-x)FofVoF(-x)FfV(-x)BoBoFAfB(-x)VFCoBf 2 fBCoVFB(-x)fAFBooBV(-x)fFF(-x)oVfFo(-x)fofo(-x)(-x)o 3 BfoCFVxCAfFoBBoxBFfxAVofoFFxfoxxxx A21B12C21D12G1H2N1O2q1p2h1g2: (-x)o(-x)oof(-x)FoFfoV(-x)AfF(-x)BoBoBFfA(-x)CFVoCfB 3 o(-x)o(-x)foF(-x)FofVoA(-x)FfB(-x)BoBoFAfC(-x)VFCoBf 2 fBCoVFBxfAFBooBVxfFFxoVfFoxfofoxxo 3 BfoCFVxBAfFoBBoxVFfxFVofoFfxfoxoox A2B12C2D12G4H2O2P4p2o4g24d4a4: xoxoofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 (-x)(-x)(-x)(-x)fof(-x)FofVoF(-x)FfV(-x)BoBoFAfB(-x)VFCoBf 2 fBCoVFCxfAFBooBBxfFAxoVfFoxFofxxxx 3 BfoCFV(-x)BAfFoBBo(-x)VFf(-x)FVofoFf(-x)fo(-x)oo(-x) A2B12C2D12H23O2Q3p2n3h3g2c3b3: xoxoofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 (-x)(-x)(-x)(-x)fof(-x)FofVoF(-x)FfV(-x)BoBoFAfB(-x)VFCoBf 2 fBCoVFB(-x)fAFBooBV(-x)fFF(-x)oVfFo(-x)fofo(-x)(-x)o 3 BfoCFVxCAfFoBBoxBFfxAVofoFFxfoxxxx A2B12C2G4H2O2P4p2o4g24d4b34a4: xoxxofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 (-x)(-x)(-x)ofof(-x)FofVoF(-x)FfV(-x)BoBoFAfB(-x)VFCoBf 2 fBCoVFCxfAFBooBBxfFAxoVfFoxFofxxox 3 BfoCFV(-x)BAfFoBBo(-x)VFf(-x)FVofoFf(-x)fo(-x)o(-x)(-x) A2B12C2G4H2O2P4p2o4g24d4c34a4: xoxxofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 (-x)(-x)(-x)ofof(-x)FofVoF(-x)FfV(-x)BoBoFAfB(-x)VFCoBf 2 fBCoVFCxfAFBooBBxfFAxoVfFoxFofxoxx 3 BfoCFV(-x)BAfFoBBo(-x)VFf(-x)FVofoFf(-x)fo(-x)(-x)o(-x) A2B12C2H23O2Q3p2n3h3g2d43c3b3: xoxxofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 (-x)(-x)(-x)ofof(-x)FofVoF(-x)FfV(-x)BoBoFAfB(-x)VFCoBf 2 fBCoVFB(-x)fAFBooBV(-x)fFF(-x)oVfFo(-x)fof(-x)(-x)(-x)o 3 BfoCFVxCAfFoBBoxBFfxAVofoFFxfooxxx A2C2D12G4H2O2P4p2o4g24d4c34a4: xxxoofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 (-x)o(-x)(-x)fof(-x)FofVoF(-x)FfV(-x)BoBoFAfB(-x)VFCoBf 2 fBCoVFCxfAFBooBBxfFAxoVfFoxFofxoxx 3 BfoCFV(-x)BAfFoBBo(-x)VFf(-x)FVofoFf(-x)fo(-x)(-x)o(-x) A2B12C2D12G4H2O2P4p2o4g24d4b34a4: xoxoofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 (-x)(-x)(-x)(-x)fof(-x)FofVoF(-x)FfV(-x)BoBoFAfB(-x)VFCoBf 2 fBCoVFCxfAFBooBBxfFAxoVfFoxFofxxox 3 BfoCFV(-x)BAfFoBBo(-x)VFf(-x)FVofoFf(-x)fo(-x)o(-x)(-x) A2B12C2D12G4H2O2P4p2o4g24d4c34a4: xoxoofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 (-x)(-x)(-x)(-x)fof(-x)FofVoF(-x)FfV(-x)BoBoFAfB(-x)VFCoBf 2 fBCoVFCxfAFBooBBxfFAxoVfFoxFofxoxx 3 BfoCFV(-x)BAfFoBBo(-x)VFf(-x)FVofoFf(-x)fo(-x)(-x)o(-x) A2B12C2D12H23O2Q3p2n3h3g2c3b3a43: xoxoofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 (-x)(-x)(-x)(-x)fof(-x)FofVoF(-x)FfV(-x)BoBoFAfB(-x)VFCoBf 2 fBCoVFB(-x)fAFBooBV(-x)fFF(-x)oVfFo(-x)fofo(-x)(-x)(-x) 3 BfoCFVxCAfFoBBoxBFfxAVofoFFxfoxxxo A2B12C2D12H23O2Q3p2n3h3g2d43c3b3: xoxoofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 (-x)(-x)(-x)(-x)fof(-x)FofVoF(-x)FfV(-x)BoBoFAfB(-x)VFCoBf 2 fBCoVFB(-x)fAFBooBV(-x)fFF(-x)oVfFo(-x)fof(-x)(-x)(-x)o 3 BfoCFVxCAfFoBBoxBFfxAVofoFFxfooxxx A2B12C2D12G4H2O2P4p2o4g24d4c34b34a4: xoxoofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 (-x)(-x)(-x)(-x)fof(-x)FofVoF(-x)FfV(-x)BoBoFAfB(-x)VFCoBf 2 fBCoVFCxfAFBooBBxfFAxoVfFoxFofxoox 3 BfoCFV(-x)BAfFoBBo(-x)VFf(-x)FVofoFf(-x)fo(-x)(-x)(-x)(-x) A2C2G4H23O2P4Q3p2o4n3h3g24d43c34b34a43: xxxxofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 (-x)o(-x)ofof(-x)FofVoF(-x)FfV(-x)BoBoFAfB(-x)VFCoBf 2 fBCoVFC(-x)fAFBooBB(-x)fFA(-x)oVfFo(-x)Fof(-x)oo(-x) 3 BfoCFV(-x)CAfFoBBo(-x)BFf(-x)AVofoFF(-x)foo(-x)(-x)o A2B12C2G4H23O2P4Q3p2o4n3h3g24d43c34b34a43: xoxxofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 (-x)(-x)(-x)ofof(-x)FofVoF(-x)FfV(-x)BoBoFAfB(-x)VFCoBf 2 fBCoVFC(-x)fAFBooBB(-x)fFA(-x)oVfFo(-x)Fof(-x)oo(-x) 3 BfoCFV(-x)CAfFoBBo(-x)BFf(-x)AVofoFF(-x)foo(-x)(-x)o A2C2D12G4H23O2P4Q3p2o4n3h3g24d43c34b34a43: xxxoofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 (-x)o(-x)(-x)fof(-x)FofVoF(-x)FfV(-x)BoBoFAfB(-x)VFCoBf 2 fBCoVFC(-x)fAFBooBB(-x)fFA(-x)oVfFo(-x)Fof(-x)oo(-x) 3 BfoCFV(-x)CAfFoBBo(-x)BFf(-x)AVofoFF(-x)foo(-x)(-x)o A2B12C2D12G4H23O2P4Q3p2o4n3h3g24d43c34b34a43: xoxoofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 (-x)(-x)(-x)(-x)fof(-x)FofVoF(-x)FfV(-x)BoBoFAfB(-x)VFCoBf 2 fBCoVFC(-x)fAFBooBB(-x)fFA(-x)oVfFo(-x)Fof(-x)oo(-x) 3 BfoCFV(-x)CAfFoBBo(-x)BFf(-x)AVofoFF(-x)foo(-x)(-x)o A21B12C21D12G14H23N1O2P4Q3q1p2o4n3h13g24d43c34b34a43: (-x)o(-x)oof(-x)FoFfoV(-x)AfF(-x)BoBoBFfA(-x)CFVoCfB 3 o(-x)o(-x)foF(-x)FofVoA(-x)FfB(-x)BoBoFAfC(-x)VFCoBf 2 fBCoVFC(-x)fAFBooBB(-x)fFA(-x)oVfFo(-x)Fof(-x)oo(-x) 3 BfoCFV(-x)CAfFoBBo(-x)BFf(-x)AVofoFF(-x)foo(-x)(-x)o | |
Stott expansion: (derived CRFs) |
2:A2C2H2O2p2g2: xxxxofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 oxoxFxFoAxFBxAoAFBoCxCxARFCoBASxCF 2 fBCoVFBxfAFBooBVxfFFxoVfFoxfofoxxo 3 BfoCFVxBAfFoBBoxVFfxFVofoFfxfoxoox &#zx → ‡ (eg. |DF|=|FI|=q and |DI|=f) | |
2:A2B12C2H2O2p2g2: xoxxofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 oooxFxFoAxFBxAoAFBoCxCxARFCoBASxCF 2 fBCoVFBxfAFBooBVxfFFxoVfFoxfofoxxo 3 BfoCFVxBAfFoBBoxVFfxFVofoFfxfoxoox &#zx → ‡ (eg. |DF|=|FI|=q and |DI|=f) | ||
2:A2C2D12H2O2p2g2: xxxoofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 oxooFxFoAxFBxAoAFBoCxCxARFCoBASxCF 2 fBCoVFBxfAFBooBVxfFFxoVfFoxfofoxxo 3 BfoCFVxBAfFoBBoxVFfxFVofoFfxfoxoox &#zx → ‡ (eg. |FI|=q) | ||
2:A2B12C2D12H2O2p2g2: xoxoofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 ooooFxFoAxFBxAoAFBoCxCxARFCoBASxCF 2 fBCoVFBxfAFBooBVxfFFxoVfFoxfofoxxo 3 BfoCFVxBAfFoBBoxVFfxFVofoFfxfoxoox &#zx → ‡ (eg. |FI|=q) | ||
24:A2C2G4H2O2P4p2o4g24d4a4: xxxxofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 oxoxFxFoAxFBxAoAFBoCxCxARFCoBASxCF 2 fBCoVFCxfAFBooBBxfFAxoVfFoxFofxxxx 3 CFxSABoCRFAxCCxoBAFoABxFxAFoFxoxxo &#zx → ‡ (eg. |BB|=F) | ||
24:A2C2G4H2O2P4p2o4g24d4a4: xoxxofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 oooxFxFoAxFBxAoAFBoCxCxARFCoBASxCF 2 fBCoVFCxfAFBooBBxfFAxoVfFoxFofxxxx 3 CFxSABoCRFAxCCxoBAFoABxFxAFoFxoxxo &#zx → ‡ (eg. |BB|=F) | ||
23:A2B12C2H23O2Q3p2n3h3g2c3b3: xoxxofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 oooxFxFoAxFBxAoAFBoCxCxARFCoBASxCF 2 FCSxBACoFRACxxCBoFAAoxBFAxoFxFxoox 3 BfoCFVxCAfFoBBoxBFfxAVofoFFxfoxxxx &#zx → † | ||
24:A2C2D12G4H2O2P4p2o4g24d4a4: xxxoofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 oxooFxFoAxFBxAoAFBoCxCxARFCoBASxCF 2 fBCoVFCxfAFBooBBxfFAxoVfFoxFofxxxx 3 CFxSABoCRFAxCCxoBAFoABxFxAFoFxoxxo &#zx → ‡ (eg. |II|=f) | ||
23:A2C2D12H23O2Q3p2n3h3g2c3b3: xxxoofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 oxooFxFoAxFBxAoAFBoCxCxARFCoBASxCF 2 FCSxBACoFRACxxCBoFAAoxBFAxoFxFxoox 3 BfoCFVxCAfFoBBoxBFfxAVofoFFxfoxxxx &#zx → ‡ (eg. |AA|=F) | ||
12:A21B12C21D12G1H2N1O2q1p2h1g2: oxoxxFoAxAFxBoRFAoCxCxCAFRoSABxSFC 3 xoxoFxAoAxFBxRoAFCoCxCxARFSoBASxCF 2 fBCoVFBxfAFBooBVxfFFxoVfFoxfofoxxo 3 BfoCFVxBAfFoBBoxVFfxFVofoFfxfoxoox &#zx → † | ||
24:A2B12C2D12G4H2O2P4p2o4g24d4a4: xoxoofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 ooooFxFoAxFBxAoAFBoCxCxARFCoBASxCF 2 fBCoVFCxfAFBooBBxfFAxoVfFoxFofxxxx 3 CFxSABoCRFAxCCxoBAFoABxFxAFoFxoxxo &#zx → † | ||
23:A2B12C2D12H23O2Q3p2n3h3g2c3b3: xoxoofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 ooooFxFoAxFBxAoAFBoCxCxARFCoBASxCF 2 FCSxBACoFRACxxCBoFAAoxBFAxoFxFxoox 3 BfoCFVxCAfFoBBoxBFfxAVofoFFxfoxxxx &#zx → † | ||
24:A2B12C2G4H2O2P4p2o4g24d4b34a4: xoxxofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 oooxFxFoAxFBxAoAFBoCxCxARFCoBASxCF 2 fBCoVFCxfAFBooBBxfFAxoVfFoxFofxxox 3 CFxSABoCRFAxCCxoBAFoABxFxAFoFxoxoo &#zx → † | ||
24:A2B12C2G4H2O2P4p2o4g24d4c34a4: xoxxofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 oooxFxFoAxFBxAoAFBoCxCxARFCoBASxCF 2 fBCoVFCxfAFBooBBxfFAxoVfFoxFofxoxx 3 CFxSABoCRFAxCCxoBAFoABxFxAFoFxooxo &#zx → † | ||
23:A2B12C2H23O2Q3p2n3h3g2d43c3b3: xoxxofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 oooxFxFoAxFBxAoAFBoCxCxARFCoBASxCF 2 FCSxBACoFRACxxCBoFAAoxBFAxoFxFooox 3 BfoCFVxCAfFoBBoxBFfxAVofoFFxfooxxx &#zx → † | ||
24:A2C2D12G4H2O2P4p2o4g24d4c34a4 xxxoofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 oxooFxFoAxFBxAoAFBoCxCxARFCoBASxCF 2 fBCoVFCxfAFBooBBxfFAxoVfFoxFofxoxx 3 CFxSABoCRFAxCCxoBAFoABxFxAFoFxooxo &#zx → ‡ (eg. |BB|=F) | ||
24:A2B12C2D12G4H2O2P4p2o4g24d4b34a4: xoxoofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 ooooFxFoAxFBxAoAFBoCxCxARFCoBASxCF 2 fBCoVFCxfAFBooBBxfFAxoVfFoxFofxxox 3 CFxSABoCRFAxCCxoBAFoABxFxAFoFxoxoo &#zx → † | ||
24:A2B12C2D12G4H2O2P4p2o4g24d4c34a4: xoxoofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 ooooFxFoAxFBxAoAFBoCxCxARFCoBASxCF 2 fBCoVFCxfAFBooBBxfFAxoVfFoxFofxoxx 3 CFxSABoCRFAxCCxoBAFoABxFxAFoFxooxo &#zx → † | ||
23:A2B12C2D12H23O2Q3p2n3h3g2c3b3a43: xoxoofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 ooooFxFoAxFBxAoAFBoCxCxARFCoBASxCF 2 FCSxBACoFRACxxCBoFAAoxBFAxoFxFxooo 3 BfoCFVxCAfFoBBoxBFfxAVofoFFxfoxxxo &#zx → † | ||
23:A2B12C2D12H23O2Q3p2n3h3g2d43c3b3: xoxoofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 ooooFxFoAxFBxAoAFBoCxCxARFCoBASxCF 2 FCSxBACoFRACxxCBoFAAoxBFAxoFxFooox 3 BfoCFVxCAfFoBBoxBFfxAVofoFFxfooxxx &#zx → † | ||
24:A2B12C2D12G4H2O2P4p2o4g24d4c34b34a4: xoxoofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 ooooFxFoAxFBxAoAFBoCxCxARFCoBASxCF 2 fBCoVFCxfAFBooBBxfFAxoVfFoxFofxoox 3 CFxSABoCRFAxCCxoBAFoABxFxAFoFxoooo &#zx → † | ||
234:A2C2G4H23O2P4Q3p2o4n3h3g24d43c34b34a43: xxxxofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 oxoxFxFoAxFBxAoAFBoCxCxARFCoBASxCF 2 FCSxBASoFRACxxCCoFARoxBFAxoAxFoxxo 3 CFxSABoSRFAxCCxoCAFoRBxFxAAoFxxoox &#zx → ‡ (eg. |ae|=|bf|=f) | ||
234:A2B12C2G4H23O2P4Q3p2o4n3h3g24d43c34b34a43: xoxxofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 oooxFxFoAxFBxAoAFBoCxCxARFCoBASxCF 2 FCSxBASoFRACxxCCoFARoxBFAxoAxFoxxo 3 CFxSABoSRFAxCCxoCAFoRBxFxAAoFxxoox &#zx → ‡ (eg. |ae|=|bf|=f) | ||
234:A2C2D12G4H23O2P4Q3p2o4n3h3g24d43c34b34a43: xxxoofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 oxooFxFoAxFBxAoAFBoCxCxARFCoBASxCF 2 FCSxBASoFRACxxCCoFARoxBFAxoAxFoxxo 3 CFxSABoSRFAxCCxoCAFoRBxFxAAoFxxoox &#zx → ‡ (eg. |ae|=|bf|=f) | ||
234:A2B12C2D12G4H23O2P4Q3p2o4n3h3g24d43c34b34a43: xoxoofxFoFfoVxAfFxBoBoBFfAxCFVoCfB 3 ooooFxFoAxFBxAoAFBoCxCxARFCoBASxCF 2 FCSxBASoFRACxxCCoFARoxBFAxoAxFoxxo 3 CFxSABoSRFAxCCxoCAFoRBxFxAAoFxxoox &#zx → ‡ (eg. |ae|=|bf|=f) | ||
1234:A21B12C21D12G14H23N1O2P4Q3q1p2o4n3h13g24d43c34b34a43: oxoxxFoAxAFxBoRFAoCxCxCAFRoSABxSFC 3 xoxoFxAoAxFBxRoAFCoCxCxARFSoBASxCF 2 FCSxBASoFRACxxCCoFARoxBFAxoAxFoxxo 3 CFxSABoSRFAxCCxoCAFoRBxFxAAoFxxoox &#zx → † | ||
using here node marks / (pseudo) edge lengths: F=f+x=ff, V=F+v=2f, A=F+x=f+2x, B=V+x=2f+x=fff, C=B+x=2F=2f+2x, R=A+x=f+3x, S=C+x=2f+3x |
in o2o3o4o subsymmetry (up) | |
---|---|
Representation: |
oxqwQ 2 qowxx 3 xxooo 4 oxoxo &#zx (spic) |
All layers & kaleido-facetings per layer: |
A: o2q3x4o → A3: o2w3(-x)4q B: x2o3x4x → B1: (-x)2o3x4x → B13: (-x)2x3(-x)4w → B132: (-x)2(-x)3o4w ↳ B14: (-x)2o3w4(-x) ↳ B3: x2x3(-x)4w → (B31 = B13) ↳ B32: x2(-x)3o4w → (B321 = B132) ↳ B4: x2o3w4(-x) → (B41 = B14) C: q2w3o4o D: w2x3o4x → D2: w2(-x)3x4x → D23: w2o3(-x)4w ↳ D24: w2(-x)3w4(-x) ↳ D4: w2x3q4(-x) → (D42 = D24) E: Q2x3o4o → E2: Q2(-x)3x4o → E23: Q2o3(-x)4q |
A priori invalid combinations: |
A + B3,B13,D23,E23 A3 + B,B1,D2,E2 B + D4,D23,D24,E23 B1 + D4,D23,D24,E23 B3 + D2,D24,E2 B4 + D,D2 B13 + D2,D24,E2 B14 + D,D2 B32 + D,D4,E B132 + D,D4,E D + E2 D2 + E,E23 D4 + E2 D23 + E2 D24 + E (all giving rise to u edges) E23 (giving rise to q or w edges within extremal layer) |
Other layer-combinations: |
ABCD2E2 oxqwQ 2 qow(-x)(-x) 3 xxoxx 4 oxoxo &#zx → ‡ (dead end at C) AB1CDE o(-x)qwQ 2 qowxx 3 xxooo 4 oxoxo &#zx → ‡ (q in A) AB1CD2E2 o(-x)qwQ 2 qow(-x)(-x) 3 xxoxx 4 oxoxo &#zx → † AB4CD4E oxqwQ 2 qowxx 3 xwoqo 4 o(-x)o(-x)o &#zx → ‡ (q in A) AB4CD24E2 oxqwQ 2 qow(-x)(-x) 3 xwowx 4 o(-x)o(-x)o &#zx → ‡ (dead end at C) AB14CD4E o(-x)qwQ 2 qowxx 3 xwoqo 4 o(-x)o(-x)o &#zx → ‡ (w in B) AB14CD24E2 o(-x)qwQ 2 qow(-x)(-x) 3 xwowx 4 o(-x)o(-x)o &#zx → † AB32CD2E2 oxqwQ 2 q(-x)w(-x)(-x) 3 xooxx 4 owoxo &#zx → † AB32CD24E2 oxqwQ 2 q(-x)w(-x)(-x) 3 xoowx 4 owo(-x)o &#zx → † AB132CD24E2 o(-x)qwQ 2 q(-x)w(-x)(-x) 3 xoowx 4 owo(-x)o &#zx → † A3B3CDE oxqwQ 2 wxwxx 3 (-x)(-x)ooo 4 qwoxo &#zx A3B3CD4E oxqwQ 2 wxwxx 3 (-x)(-x)oqo 4 qwo(-x)o &#zx → ‡ (dead end at B) A3B3CD23E oxqwQ 2 wxwox 3 (-x)(-x)o(-x)o 4 qwowo &#zx → † A3B4CD4E oxqwQ 2 wowxx 3 (-x)woqo 4 q(-x)o(-x)o &#zx → ‡ (w in C) A3B4CD23E oxqwQ 2 wowox 3 (-x)wo(-x)o 4 q(-x)owo &#zx → † A3B13CDE o(-x)qwQ 2 wxwxx 3 (-x)(-x)ooo 4 qwoxo &#zx → ‡ (w in C) A3B13CD4E o(-x)qwQ 2 wxwxx 3 (-x)(-x)oqo 4 qwo(-x)o &#zx → ‡ (w in D) A3B13CD23E o(-x)qwQ 2 wxwox 3 (-x)(-x)o(-x)o 4 qwowo &#zx → † A3B14CD4E o(-x)qwQ 2 wowxx 3 (-x)woqo 4 q(-x)o(-x)o &#zx → † A3B14CD23E o(-x)qwQ 2 wowox 3 (-x)wo(-x)o 4 q(-x)owo &#zx → † |
Stott expansion: (derived CRFs) |
3:A3B3CDE: oxqwQ 2 wxwxx 3 ooxxx 4 qwoxo &#zx → CRF with cell list: 6 coes 16 hips 12 sircoes 12 squobcues (J28) 2 toes 16 tricues (J3) 80 trips related: oxqw. 2 wxwx. 3 ooxx. 4 qwox. &#zx → CRF with cell list: 6 coes 2 gircoes 12 sircoes 12 squacues (J4) 16 tricues (J3) 56 trips |
using here node marks / (pseudo) edge lengths: Q=w+x=q+u, W=Q+x=w+u | |
in . o3o4o subsymmetry (up) | |
additional, not prismatically symmetric combinations of formers: |
none |
in o3o3o *b3o subsymmetry (up) | ||
---|---|---|
Representation: |
qoo 3 xxx 3 oqo *b3ooq &#zx (spic) with layer cycle: A(134) → B(341) → C(413) → A(134) | |
All layers & kaleido-facetings per layer: |
A: q3x3o *b3o → A2: w3(-x)3x *b3x → A23: w3o3(-x) *b3x → A234: w3x3(-x) *b3(-x) → A2342: Q3(-x)3o *b3o ↳ A24: w3o3x *b3(-x) → (A243 = A234) → (A2432 = A2342) B: o3x3q *b3o → B2: x3(-x)3w *b3x → B21: (-x)3o3w *b3x → B214: (-x)3x3w *b3(-x) → B2142: o3(-x)3Q *b3o ↳ B24: x3o3w *b3(-x) → (B241 = B214) → (B2412 = B2142) C: o3x3o *b3q → C2: x3(-x)3x *b3w → C21: (-x)3o3x *b3w → C213: (-x)3x3(-x) *b3w → C2132: o3(-x)3o *b3Q ↳ C23: x3o3(-x) *b3w → (C231 = C213) → (C2312 = C2132) | |
A priori invalid combinations: |
A + B2,B2142,C2,C2132 A2 + B,B24,B214,C,C23,C213 A23 + B24,B214,C2,C21 A24 + B21,C2,C23,C213 A234 + B2,B21,B2142,C2,C21,C2132 A2342 + B,B214,C,C213 |
B + C2,C213 B2 + C,C21,C213 B21 + C2,C23 B24 + C21,C213 B214 + C2,C23,C2132 B2142 + C,C213 |
Other layer-combinations: |
ABC21 qo(-x) 3 xxo 3 oqx *b3 oow &#zx → † ABC23 qox 3 xxo 3 oq(-x) *b3 oow &#zx → † AB21C21 q(-x)(-x) 3 xoo 3 owx *b3 oxw &#zx → † AB21C213 q(-x)(-x) 3 xox 3 ow(-x) *b3 oxw &#zx → † AB24C23 qxx 3 xoo 3 ow(-x) *b3 o(-x)w &#zx → † AB214C21 q(-x)(-x) 3 xxo 3 owx *b3 o(-x)w &#zx → † AB214C213 q(-x)(-x) 3 xxx 3 ow(-x) *b3 o(-x)w &#zx → † A2B2C2 wxx 3 (-x)(-x)(-x) 3 xwx *b3 xxw &#zx A2B2C2132 wxo 3 (-x)(-x)(-x) 3 xwo *b3 xxQ &#zx → † A2B21C21 w(-x)(-x) 3 (-x)oo 3 xwx *b3 xxw &#zx → † A2B21C2132 w(-x)o 3 (-x)o(-x) 3 xwo *b3 xxQ &#zx → † A2B2142C21 wo(-x) 3 (-x)(-x)o 3 xQx *b3 xow &#zx → † A2B2142C2132 woo 3 ( -x)(-x)(-x) 3 xQo *b3 xoQ &#zx → † A23B21C213 w(-x)(-x) 3 oox 3 (-x)w(-x) *b3 xxw &#zx → † A23B21C2132 w(-x)o 3 oo(-x) 3 (-x)wo *b3 xxQ &#zx → † A23B2142C23 wox 3 o(-x)o 3 (-x)Q(-x) *b3 xow &#zx → † A23B2142C2132 woo 3 o(-x)(-x) 3 (-x)Qo *b3 xoQ &#zx → † A24B2142C2132 woo 3 o(-x)(-x) 3 xQo *b3 (-x)oQ &#zx → † A234B214C213 w(-x)(-x) 3 xxx 3 (-x)w(-x) *b3 (-x)(-x)w &#zx → † A2342B2142C2132 Qoo 3 (-x)(-x)(-x) 3 oQo *b3 ooQ &#zx → † | |
Stott expansion: (derived CRFs) |
1:ABC wxx 3 xxx 3 oqo *b3 ooq &#zx (owauprit) → CRF with cell list: 24 esquidpies (J15) 32 hips 8 octs 160 trips 16 tuts related: .xx 3 .xx 3 .qo *b3 .oq &#zx = Wythoffian x3x3o4x (prit) with cell list: 24 cubes 32 hips 8 sircoes 16 tuts |
(-2):ABC qoo 3 ooo 3 oqo *b3 ooq &#zx = Wythoffian x3o4o3o (ico) with cell list: 24 octs related: .oo 3 .oo 3 .qo *b3 .oq &#zx = Wythoffian o3o3o4x (tes) with cell list: 8 cubes |
1(-2):ABC wxx 3 ooo 3 oqo *b3 ooq &#zx (poxic) → CRF with cell list: 24 esquidpies (J15) 16 tets 32 trips related: .xx 3 .oo 3 .qo *b3 .oq &#zx = Wythoffian x3o3o4x (sidpith) with cell list: 32 cubes 16 tets 32 trips |
13:ABC wxx 3 xxx 3 xwx *b3 ooq &#zx (poc prico) → CRF with cell list: 64 hips 24 squobcues (J28) 8 toes 128 trips 16 tuts related: wx. 3 xx. 3 xw. *b3 oo. &#zx = Wythoffian o3x3x4x (grit) with cell list: 8 gircoes 32 trips 16 tuts | |
1(-2)3:ABC wxx 3 ooo 3 xwx *b3 ooq &#zx (pocsric) → CRF with cell list: 8 coes 24 squobcues (J28) 16 tets 64 trips related: wx. 3 oo. 3 xw. *b3 oo. &#zx = Wythoffian x3o3x4x (tat) with cell list: 16 tets 8 tics |
134:ABC wxx 3 xxx 3 xwx *b3 xxw &#zx = Wythoffian x3x4o3x (prico) with cell list: 96 hips 24 sircoes 24 toes 96 trips related: .xx 3 .xx 3 .wx *b3 .xw &#zx = Wythoffian x3x3x4x (gidpith) with cell list: 8 gircoes 32 hips 24 ops 16 toes | |
1(-2)34:ABC wxx 3 ooo 3 xwx *b3 xxw &#zx = Wythoffian x3o4x3o (srico) with cell list: 24 coes 24 sircoes 6 trips related: wx. 3 oo. 3 xw. *b3 xx. &#zx = Wythoffian x3o3x4x (proh) with cell list: 16 coes 24 ops 8 tics 32 trips |
2:A2B2C2 wxx 3 ooo 3 xwx *b3 xxw &#zx = Wythoffian x3o4x3o (srico) with cell list: 24 coes 24 sircoes 6 trips related: wx. 3 oo. 3 xw. *b3 xx. &#zx = Wythoffian x3o3x4x (proh) with cell list: 16 coes 24 ops 8 tics 32 trips | |
(-1)2:A2B2C2 qoo 3 ooo 3 xwx *b3 xxw &#zx (pocsric) → CRF with cell list: 8 coes 24 squobcues (J28) 16 tets 64 trips related: .oo 3 .oo 3 .wx *b3 .xw &#zx = Wythoffian x3o3x4x (tat) with cell list: 16 tets 8 tics |
(-1)2(-3):A2B2C2 qoo 3 ooo 3 oqo *b3 xxw &#zx (poxic) → CRF with cell list: 24 esquidpies (J15) 16 tets 32 trips related: qo. 3 oo. 3 oq. *b3 xx. &#zx = Wythoffian x3o3o4x (sidpith) with cell list: 32 cubes 16 tets 32 trips | |
(-1)2(-3)(-4):A2B2C2 qoo 3 ooo 3 oqo *b3 ooq &#zx = Wythoffian x3o4o3o (ico) with cell list: 24 octs related: .oo 3 .oo 3 .qo *b3 .oq &#zx = Wythoffian o3o3o4x (tes) with cell list: 8 cubes | ||
using here node marks / (pseudo) edge lengths: Q=w+x=q+u, W=Q+x=w+u |
in o3o3o *b3o subsymmetry (up) | ||
---|---|---|
Representation: |
fox 3 ooo 3 xfo *b3 oxf &#zx (sadi) with layer cycle: A(1234) → B(3241) → C(4213) → A(1234) | |
All layers & kaleido-facetings per layer: |
A: f3o3x *b3o → A3: f3x3(-x) *b3o → A32: F3(-x)3o *b3x → A324: F3o3o *b3(-x) B: o3o3f *b3x → B4: o3x3f *b3(-x) → B42: x3(-x)3F *b3o → B421: (-x)3o3F *b3o C: x3o3o *b3f → C1: (-x)3x3o *b3f → C12: o3(-x)3x *b3F → C123: o3o3(-x) *b3F | |
A priori invalid combinations: |
A + C123 A3 + B42,C12 A32 + B4,C1 A324 + B B4 + C12 B42 + C1 B421 + C (all giving rise to u edges) | |
Other layer-combinations: |
ABC1 fo(-x)3oox3xfo *b3oxf&#zx ABC12 foo3oo(-x)3xfx *b3oxF&#zx → ‡ (f in A) AB4C1 fo(-x)3oxx3xfo *b3o(-x)f&#zx → † AB42C12 fxo3o(-x)(-x)3xFx *b3ooF&#zx → † AB421C1 f(-x)(-x)3oox3xFo *b3oof&#zx → † AB421C12 f(-x)o3oo(-x)3xFx *b3ooF&#zx → † A3B4C1 fo(-x)3xxx3(-x)fo *b3o(-x)f&#zx → † A3B4C123 foo3xxo3(-x)f(-x) *b3o(-x)F&#zx → † A3B421C123 f(-x)o3xoo3(-x)F(-x) *b3ooF&#zx → † A32B42C12 Fxo3(-x)(-x)(-x)3oFx *b3xoF&#zx → † A32B42C123 Fxo3(-x)(-x)o3oF(-x) *b3xoF&#zx → † A32B421C123 F(-x)o3(-x)oo3oF(-x) *b3xoF&#zx → † A324B421C123 F(-x)o3ooo3oF(-x) *b3(-x)oF&#zx → † | |
Stott expansion: (derived CRFs) |
1:ABC1: Fxo 3 oox 3 xfo *b3 oxf &#zx (pretasto) → CRF with cell list: 24 bilbiroes (J91) 8 coes 40 octs 32 teddies (J63) 40 tets |
2:ABC: fox 3 xxx 3 xfo *b3 oxf &#zx (prissi) → CRF with cell list: 24 ikes 96 tricues (J3) 96 trips 24 tuts |
using here node marks / (pseudo) edge lengths: F=f+x |
in o2o2o2o subsymmetry (up) | |||
---|---|---|---|
Representation: |
ooo|xxx|fff|FFF 2 Fxf|oFf|xFo|fxo 2 xfF|Ffo|Fox|xof 2 fFx|foF|oxF|ofx &#zx (sadi) with layer cycles: (ABCDEFGHIJKL)(1234) → (KFHAJIELBGDC)(3124) → (ILDGBKCFJAHE)(2431) → (BCAEFDHIGKLJ)(1423) → (JEGCLHDKAIFB)(4132) → (GJEHCLADKBIF)(4321) → (ABCDEFGHIJKL)(4321) | ||
All layers & kaleido-facetings per layer: |
A: o2F2x2f → A3: o2F2(-x)2f B: o2x2f2F → B2: o2(-x)2f2F C: o2f2F2x → C4: o2f2F2(-x) D: x2o2F2f → D1: (-x)2o2F2f E: x2F2f2o → E1: (-x)2F2f2o F: x2f2o2F → F1: (-x)2f2o2F G: f2x2F2o → G2: f2(-x)2F2o H: f2F2o2x → H4: f2F2o2(-x) I: f2o2x2F → I3: f2o2(-x)2F J: F2f2x2o → J3: F2f2(-x)2o K: F2x2o2f → K2: F2(-x)2o2f L: F2o2f2x → L4: F2o2f2(-x) | ||
A priori invalid combinations: |
A + I3,J3 A3 + I,J B + G2,K2 B2 + G,K C + H4,L4 C4 + H,L D + E1,F1 D1 + E,F |
E + F1 E1 + F G + K2 G2 + K H + L4 H4 + L I + J3 I3 + J (all giving rise to u edges) | |
Other layer-combinations: |
ABCD1E1F1GHIJKL ooo(-x)(-x)(-x)fffFFF 2 FxfoFfxFofxo 2 xfFFfoFoxxof 2 fFxfoFoxFofx &#zx ABC4D1E1F1GH4IJKL4 ooo(-x)(-x)(-x)fffFFF 2 FxfoFfxFofxo 2 xfFFfoFoxxof 2 fF(-x)foFo(-x)Fof(-x) &#zx → ‡ (extremal f-edge DG) AB2C4D1E1F1G2H4IJK2L4 ooo(-x)(-x)(-x)fffFFF 2 F(-x)foFf(-x)Fof(-x)o 2 xfFFfoFoxxof 2 fF(-x)foFo(-x)Fof(-x) &#zx → † A3B2C4D1E1F1G2H4I3J3K2L4 ooo(-x)(-x)(-x)fffFFF 2 F(-x)foFf(-x)Fof(-x)o 2 (-x)fFFfoFo(-x)(-x)of 2 fF(-x)foFo(-x)Fof(-x) &#zx → † | ||
Stott expansion: (derived CRFs) |
1:ABCD1E1F1GHIJKL: xxxoooFFFAAA 2 FxfoFfxFofxo 2 xfFFfoFoxxof 2 fFxfoFoxFofx &#zx → CRF with cell list: 6 bilbiroes (J91) 2 ikes 36 squippies (J1) 40 teddies (J63) 36 tets 8 trips | ||
using here node marks / (pseudo) edge lengths: F=f+x, A=f+u=f+2x |
in o2o3o4o subsymmetry (up) | ||
---|---|---|
Representation: |
qo 2 oo 3 xo 4 oq &#zx (rit) | |
All layers & kaleido-facetings per layer: |
A: q2o3x4o → A3: q2x3(-x)4q B: o2o3o4q | |
A priori invalid combinations: |
neither can A+A3 be applied on either side (providing extremal u-edges) (which thus excludes any mere . o3o4o symmetry) nor can A3 be applied without an additional applied partial q-contraction in the last node (else providing extremal q-edges) even when using A only, then node 1 and node 4 still has to correspond, in order not to produce non-regular hexagons (i.e. diagonally elongated squares) there | |
Stott expansion: (derived potential CRFs) |
2:AB qo 2 xx 3 xo 4 oq &#zx (pabdirico) → CRF with cell list: 6 coes 12 cubes 2 toes 16 tricues (J3) |
14:AB wx 2 oo 3 xo 4 xw &#zx = Wythoffian o3o3x4x (tat) with cell list: 16 tets 8 tics |
124:AB wx 2 xx 3 xo 4 xw &#zx (pabdiproh) → CRF with cell list: 2 gircoes 12 ops 6 tics 16 tricues (J3) 8 trips |
3(-q4):A3B qo 2 xo 3 ox 4 oo &#zx = Wythoffian x3o4o3o (ico) with cell list: 24 octs | |
13(-q4):A3B wx 2 xo 3 ox 4 oo &#zx (pexic) → CRF with cell list: 6 esquidpies (J15) 18 octs 8 trips |
34(-q4):A3B qo 2 xo 3 ox 4 xx &#zx (pacsrit) → CRF with cell list: 16 octs 2 sircoes 6 squobcues (J28) 24 trips | |
134(-q4):A3B wx 2 xo 3 ox 4 xx &#zx = Wythoffian o3x3o4x (srit) with cell list: 16 octs 8 sircoes 32 trips |
in . o3o3o subsymmetry (up) | ||
---|---|---|
Representation: |
ooxx 3 oxxo 3 xxoo &#xt (rit) with inversive top-down-symmetry | |
All layers & kaleido-facetings per layer: |
A: o3o3x → A3: o3x3(-x) → A32: x3(-x)3o → A321 (-x)3o3o B: o3x3x → B2: x3(-x)3u → B21: (-x)3o3u ↳ B3: o3u3(-x) C: x3x3o → C1: (-x)3u3o ↳ C2: u3(-x)3x → C23: u3o3(-x) D: x3o3o → D1: (-x)3x3o → D12: o3(-x)3x → D123: o3o3(-x) | |
A priori invalid combinations: |
A + B3,C23,D123 A3 + B,B2,B21,C2,D12 A32 + B,B21,B3,C,C1,D1 A321 + B2,C,C2,C23,D B + C2,C23,D12,D123 B2 + C,C1,C23,D1,D123 B21 + C,C2,C23,D,D123 B3 + C2,D12 C + D1,D12 C1 + D,D12 C2 + D1,D123 C23 + D1,D12,D123 | |
Other layer-combinations: |
ABC1D1 oo(-x)(-x) 3 oxux 3 xxoo &#xt AB2C2D oxux 3 o(-x)(-x)o 3 xuxo &#xt AB2C2D12 oxuo 3 o(-x)(-x)(-x) 3 xuxx &#xt → † AB21C1D1 o(-x)(-x)(-x) 3 ooux 3 xuoo &#xt → † A3B3CD123 ooxo 3 xuxo 3 (-x)(-x)o(-x) &#xt → † A3B3C1D1 oo(-x)(-x) 3 xuux 3 (-x)(-x)oo &#xt A3B3C1D123 oo(-x)o 3 xuuo 3 (-x)(-x)o(-x) &#xt → † A32B2C2D12 xxuo 3 (-x)(-x)(-x)(-x) 3 ouxx &#xt → † A321B3C1D123 (-x)o(-x)o 3 ouuo 3 o(-x)o(-x) &#xt → † | |
Stott expansion: (derived potential CRFs) |
1:ABC1D1 xxoo 3 oxux 3 xxoo &#xt → CRF with cell list: 1 co 6 cubes 1 oct 6 squippies (J1) 8 tricues (J3) 8 tuts related: xx.. 3 ox.. 3 xx.. &#x (coatoe) → CRF (segmentochoron) with cell list: 1 co 6 cubes 8 tricues (J3) 1 toe related: .xoo 3 .xux 3 .xoo &#xt (octum) → CRF with cell list: 1 oct 6 squippies (J1) 1 toe 8 tuts |
2:AB2C2D oxux 3 xoox 3 xuxo &#xt = Wythoffian x3x3o4o (thex) with cell list: 8 octs 16 tuts |
1(-2)3:A3B3C1D1 xxoo 3 oxxo 3 ooxx &#xt = Wythoffian o3o3x4o (rit) with cell list: 8 coes 16 tets related: xx.. 3 ox.. 3 oo.. &#x (tetatut) → CRF (segmentochoron) with cell list: 5 tets 4 tricues (J3) 1 tut related: .xo. 3 .xx. 3 .ox. &#x (tuta) → CRF (segmentochoron) with cell list: 6 tets 8 tricues (J3) 2 tuts |
© 2004-2024 | top of page |