Acronym | ... |
Name | xxfoF3oxxFx3xFxxo3Fofxx&#zx |
Face vector | 360, 1080, 900, 180 |
Confer |
|
The relation to ex runs as follows: ex in pentic subsymmetry can be given as xffoo3oxoof3fooxo3ooffx&#zx. That will be transformed into xFfoo3o(-x)oof3fxoxo3ooffx&#zx. Then into xFfoo3oooof3f(-x)oxo3oxffx&#zx. Then into xFfoo3oooxf3f(-x)o(-x)o3oxfFx&#zx. Finally once more into xFfxo3ooo(-x)f3f(-x)ooo3oxfFx&#zx. Then a Stott expansion wrt. the second and third node produces this polychoron.
The non-existing lacings calculate to vertex distances according to f=(1+sqrt(5))/2.
Incidence matrix according to Dynkin symbol
xxfoF3oxxFx3xFxxo3Fofxx&#zx → all heights = 0 – except those of the not existing lacing(1,2), lacing(1,4), lacing(1,5), lacing(2,5), and lacing(4,5) o....3o....3o....3o.... & | 120 * * | 2 0 0 0 2 2 0 0 | 1 0 2 1 0 2 0 1 0 2 0 | 1 1 2 0 1 .o...3.o...3.o...3.o... & | * 120 * | 0 1 1 0 0 0 2 2 | 0 1 0 0 0 1 3 0 2 0 2 | 0 3 1 1 0 ..o..3..o..3..o..3..o.. | * * 120 | 0 0 0 2 0 2 2 0 | 0 0 0 0 1 2 0 2 2 2 1 | 0 2 2 0 2 ------------------------------+-------------+-------------------------------+----------------------------------------+--------------- x.... ..... ..... ..... & | 2 0 0 | 120 * * * * * * * | 1 0 1 0 0 1 0 0 0 0 0 | 1 1 1 0 0 .x... ..... ..... ..... & | 0 2 0 | * 60 * * * * * * | 0 1 0 0 0 0 2 0 0 0 0 | 0 2 0 1 0 ..... .x... ..... ..... & | 0 2 0 | * * 60 * * * * * | 0 1 0 0 0 0 0 0 2 0 0 | 0 2 1 0 0 ..... ..x.. ..... ..... & | 0 0 2 | * * * 120 * * * * | 0 0 0 0 1 0 0 1 1 1 0 | 0 1 1 0 2 ..... ..... x.... ..... & | 2 0 0 | * * * * 120 * * * | 0 0 1 1 0 0 0 0 0 1 0 | 1 0 1 0 1 o.o..3o.o..3o.o..3o.o..&#x & | 1 0 1 | * * * * * 240 * * | 0 0 0 0 0 1 0 1 0 1 0 | 0 1 1 0 1 .oo..3.oo..3.oo..3.oo..&#x & | 0 1 1 | * * * * * * 240 * | 0 0 0 0 0 1 0 0 1 0 1 | 0 2 1 0 0 .o.o.3.o.o.3.o.o.3.o.o.&#x | 0 2 0 | * * * * * * * 120 | 0 0 0 0 0 0 2 0 0 0 1 | 0 2 0 1 0 ------------------------------+-------------+-------------------------------+----------------------------------------+--------------- x....3o.... ..... ..... & | 3 0 0 | 3 0 0 0 0 0 0 0 | 40 * * * * * * * * * * | 1 1 0 0 0 .x...3.x... ..... ..... & | 0 6 0 | 0 3 3 0 0 0 0 0 | * 20 * * * * * * * * * | 0 2 0 0 0 x.... ..... x.... ..... & | 4 0 0 | 2 0 0 0 2 0 0 0 | * * 60 * * * * * * * * | 1 0 1 0 0 ..... o....3x.... ..... & | 3 0 0 | 0 0 0 0 3 0 0 0 | * * * 40 * * * * * * * | 1 0 0 0 1 ..... ..x..3..x.. ..... | 0 0 6 | 0 0 0 6 0 0 0 0 | * * * * 20 * * * * * * | 0 0 0 0 2 x.fo. ..... ..... .....&#xt & | 2 1 2 | 1 0 0 0 0 2 2 0 | * * * * * 120 * * * * * | 0 1 1 0 0 .x.o. ..... ..... .....&#x & | 0 3 0 | 0 1 0 0 0 0 0 2 | * * * * * * 120 * * * * | 0 1 0 1 0 ..... o.x.. ..... .....&#x & | 1 0 2 | 0 0 0 1 0 2 0 0 | * * * * * * * 120 * * * | 0 1 0 0 1 ..... .xx.. ..... .....&#x & | 0 2 2 | 0 0 1 1 0 0 2 0 | * * * * * * * * 120 * * | 0 1 1 0 0 ..... ..... x.x.. .....&#x & | 2 0 2 | 0 0 0 1 1 2 0 0 | * * * * * * * * * 120 * | 0 0 1 0 1 .ooo.3.ooo.3.ooo.3.ooo.&#x | 0 2 1 | 0 0 0 0 0 0 2 1 | * * * * * * * * * * 120 | 0 2 0 0 0 ------------------------------+-------------+-------------------------------+----------------------------------------+--------------- x....3o....3x.... ..... & ♦ 12 0 0 | 12 0 0 0 12 0 0 0 | 4 0 6 4 0 0 0 0 0 0 0 | 10 * * * * xxfo.3oxxF. ..... .....&#zx & ♦ 3 9 6 | 3 3 3 3 0 6 12 6 | 1 1 0 0 0 3 3 3 3 0 6 | * 40 * * * x.fo. ..... x.xx. .....&#xt & ♦ 4 2 4 | 2 0 1 2 2 4 4 0 | 0 0 1 0 0 2 0 0 2 2 0 | * * 60 * * .x.o. ..... ..... .o.x.&#x ♦ 0 4 0 | 0 2 0 0 0 0 0 4 | 0 0 0 0 0 0 4 0 0 0 0 | * * * 30 * ..... o.x..3x.x.. .....&#x & ♦ 3 0 6 | 0 0 0 6 3 6 0 0 | 0 0 0 1 1 0 0 3 0 3 0 | * * * * 40
© 2004-2025 | top of page |