Acronym ...
Name ((xxfoF3oxxFx3xFxxo3Fofxx))&#zx
Face vector 360, 1080, 900, 180
Confer
uniform relative:
ex  
related CRFs:
((oFFxx3xxoof3fooxx3xxFFo))&#zx  
general polytopal classes:
expanded kaleido-facetings  

The relation to ex runs as follows: ex in pentic subsymmetry can be given as ((xffoo3oxoof3fooxo3ooffx))&#zx. That will be transformed into ((xFfoo3o(-x)oof3fxoxo3ooffx))&#zx. Then into ((xFfoo3oooof3f(-x)oxo3oxffx))&#zx. Then into ((xFfoo3oooxf3f(-x)o(-x)o3oxfFx))&#zx. Finally once more into ((xFfxo3ooo(-x)f3f(-x)ooo3oxfFx))&#zx. Then a Stott expansion wrt. the second and third node produces this polychoron.

The non-existing lacings calculate to vertex distances according to f=(1+sqrt(5))/2.


Incidence matrix according to Dynkin symbol

((xxfoF3oxxFx3xFxxo3Fofxx))&#zx   → all heights = 0 – except those of the not existing lacing(1,2), lacing(1,4), lacing(1,5), lacing(2,5), and lacing(4,5)

  o....3o....3o....3o....       & | 120   *   * |   2  0  0   0   2   2   0   0 |  1  0  2  1  0   2   0   1   0   2   0 |  1  1  2  0  1
  .o...3.o...3.o...3.o...       & |   * 120   * |   0  1  1   0   0   0   2   2 |  0  1  0  0  0   1   3   0   2   0   2 |  0  3  1  1  0
  ..o..3..o..3..o..3..o..         |   *   * 120 |   0  0  0   2   0   2   2   0 |  0  0  0  0  1   2   0   2   2   2   1 |  0  2  2  0  2
----------------------------------+-------------+-------------------------------+----------------------------------------+---------------
  x.... ..... ..... .....       & |   2   0   0 | 120  *  *   *   *   *   *   * |  1  0  1  0  0   1   0   0   0   0   0 |  1  1  1  0  0
  .x... ..... ..... .....       & |   0   2   0 |   * 60  *   *   *   *   *   * |  0  1  0  0  0   0   2   0   0   0   0 |  0  2  0  1  0
  ..... .x... ..... .....       & |   0   2   0 |   *  * 60   *   *   *   *   * |  0  1  0  0  0   0   0   0   2   0   0 |  0  2  1  0  0
  ..... ..x.. ..... .....       & |   0   0   2 |   *  *  * 120   *   *   *   * |  0  0  0  0  1   0   0   1   1   1   0 |  0  1  1  0  2
  ..... ..... x.... .....       & |   2   0   0 |   *  *  *   * 120   *   *   * |  0  0  1  1  0   0   0   0   0   1   0 |  1  0  1  0  1
  o.o..3o.o..3o.o..3o.o..  &#x  & |   1   0   1 |   *  *  *   *   * 240   *   * |  0  0  0  0  0   1   0   1   0   1   0 |  0  1  1  0  1
  .oo..3.oo..3.oo..3.oo..  &#x  & |   0   1   1 |   *  *  *   *   *   * 240   * |  0  0  0  0  0   1   0   0   1   0   1 |  0  2  1  0  0
  .o.o.3.o.o.3.o.o.3.o.o.  &#x    |   0   2   0 |   *  *  *   *   *   *   * 120 |  0  0  0  0  0   0   2   0   0   0   1 |  0  2  0  1  0
----------------------------------+-------------+-------------------------------+----------------------------------------+---------------
  x....3o.... ..... .....       & |   3   0   0 |   3  0  0   0   0   0   0   0 | 40  *  *  *  *   *   *   *   *   *   * |  1  1  0  0  0
  .x...3.x... ..... .....       & |   0   6   0 |   0  3  3   0   0   0   0   0 |  * 20  *  *  *   *   *   *   *   *   * |  0  2  0  0  0
  x.... ..... x.... .....       & |   4   0   0 |   2  0  0   0   2   0   0   0 |  *  * 60  *  *   *   *   *   *   *   * |  1  0  1  0  0
  ..... o....3x.... .....       & |   3   0   0 |   0  0  0   0   3   0   0   0 |  *  *  * 40  *   *   *   *   *   *   * |  1  0  0  0  1
  ..... ..x..3..x.. .....         |   0   0   6 |   0  0  0   6   0   0   0   0 |  *  *  *  * 20   *   *   *   *   *   * |  0  0  0  0  2
  x.fo. ..... ..... .....  &#xt & |   2   1   2 |   1  0  0   0   0   2   2   0 |  *  *  *  *  * 120   *   *   *   *   * |  0  1  1  0  0
  .x.o. ..... ..... .....  &#x  & |   0   3   0 |   0  1  0   0   0   0   0   2 |  *  *  *  *  *   * 120   *   *   *   * |  0  1  0  1  0
  ..... o.x.. ..... .....  &#x  & |   1   0   2 |   0  0  0   1   0   2   0   0 |  *  *  *  *  *   *   * 120   *   *   * |  0  1  0  0  1
  ..... .xx.. ..... .....  &#x  & |   0   2   2 |   0  0  1   1   0   0   2   0 |  *  *  *  *  *   *   *   * 120   *   * |  0  1  1  0  0
  ..... ..... x.x.. .....  &#x  & |   2   0   2 |   0  0  0   1   1   2   0   0 |  *  *  *  *  *   *   *   *   * 120   * |  0  0  1  0  1
  .ooo.3.ooo.3.ooo.3.ooo.  &#x    |   0   2   1 |   0  0  0   0   0   0   2   1 |  *  *  *  *  *   *   *   *   *   * 120 |  0  2  0  0  0
----------------------------------+-------------+-------------------------------+----------------------------------------+---------------
  x....3o....3x.... .....       &   12   0   0 |  12  0  0   0  12   0   0   0 |  4  0  6  4  0   0   0   0   0   0   0 | 10  *  *  *  *
((xxfo.3oxxF. ..... .....))&#zx &    3   9   6 |   3  3  3   3   0   6  12   6 |  1  1  0  0  0   3   3   3   3   0   6 |  * 40  *  *  *
  x.fo. ..... x.xx. .....  &#xt &    4   2   4 |   2  0  1   2   2   4   4   0 |  0  0  1  0  0   2   0   0   2   2   0 |  *  * 60  *  *
  .x.o. ..... ..... .o.x.  &#x       0   4   0 |   0  2  0   0   0   0   0   4 |  0  0  0  0  0   0   4   0   0   0   0 |  *  *  * 30  *
  ..... o.x..3x.x.. .....  &#x  &    3   0   6 |   0  0  0   6   3   6   0   0 |  0  0  0  1  1   0   0   3   0   3   0 |  *  *  *  * 40

© 2004-2026
top of page