| Acronym | ... |
| Name | oxofxfoxo3xxFxoxFxx5xxoxFxoxx&#xt |
| Face vector | 720, 2160, 1912, 472 |
| Confer |
|
The relation to ex runs as follows: ex in axial icosahedral subsymmetry can be given as VFfxo2oxofo3oooox5ooxoo&#zx = oxofofoxo3ooooxoooo5ooxoooxoo&#xt (F = ff = f+x, V = uf = f+f). That will be transformed into VFfxo2oxofx3oooo(-x)5ooxof&#zx. And finally into VFfxo2oxofx3oofo(-x)5oo(-x)of&#zx. Then a Stott expansion wrt. the third and fourth nodes produces this polychoron.
Incidence matrix according to Dynkin symbol
oxofxfoxo3xxFxoxFxx5xxoxFxoxx&#xt → height(1,2) = height(3,4) = height(6,7) = height(8,9) = (sqrt(5)-1)/4 = 0.309017
height(2,3) = height(4,5) = height(5,6) = height(7,8) = 1/2
(tid || pseudo grid || pseudo F-id || pseudo (f,x,x)-grid || pseudo (x,F)-srid || pseudo (f,x,x)-grid || pseudo F-id || pseudo grid || tid)
o........3o........5o........ & | 120 * * * * | 2 1 2 0 0 0 0 0 0 0 0 0 0 0 | 1 2 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 1 1 2 0 0 0 0 0 0 0
.o.......3.o.......5.o....... & | * 240 * * * | 0 0 1 1 1 1 1 1 0 0 0 0 0 0 | 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 | 0 1 1 1 1 1 1 1 0 0 0
..o......3..o......5..o...... & | * * 60 * * | 0 0 0 0 0 0 4 0 4 0 0 0 0 0 | 0 0 0 0 0 0 0 0 2 2 0 0 4 2 2 0 0 0 0 0 0 | 0 0 0 0 2 1 0 2 1 0 0
...o.....3...o.....5...o..... & | * * * 240 * | 0 0 0 0 0 0 0 1 1 1 1 1 1 0 | 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 | 0 0 0 0 1 0 1 1 1 1 1
....o....3....o....5....o.... | * * * * 60 | 0 0 0 0 0 0 0 0 0 0 0 4 0 2 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 2 0 0 2 1 | 0 0 0 0 2 0 0 0 2 1 0
------------------------------------+-------------------+-------------------------------------------------------+----------------------------------------------------------------------------+---------------------------------
......... x........ ......... & | 2 0 0 0 0 | 120 * * * * * * * * * * * * * | 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 1 0 1 0 0 0 0 0 0 0
......... ......... x........ & | 2 0 0 0 0 | * 60 * * * * * * * * * * * * | 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 0 1 2 0 0 0 0 0 0 0
oo.......3oo.......5oo.......&#x & | 1 1 0 0 0 | * * 240 * * * * * * * * * * * | 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 1 1 1 0 0 0 0 0 0 0
.x....... ......... ......... & | 0 2 0 0 0 | * * * 120 * * * * * * * * * * | 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | 0 1 1 0 1 1 0 0 0 0 0
......... .x....... ......... & | 0 2 0 0 0 | * * * * 120 * * * * * * * * * | 0 0 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 | 0 1 0 1 1 0 1 0 0 0 0
......... ......... .x....... & | 0 2 0 0 0 | * * * * * 120 * * * * * * * * | 0 0 0 0 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 | 0 0 1 1 0 1 1 1 0 0 0
.oo......3.oo......5.oo......&#x & | 0 1 1 0 0 | * * * * * * 240 * * * * * * * | 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 | 0 0 0 0 1 1 0 1 0 0 0
.o.o.....3.o.o.....5.o.o.....&#x & | 0 1 0 1 0 | * * * * * * * 240 * * * * * * | 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 | 0 0 0 0 1 0 1 1 0 0 0
..oo.....3..oo.....5..oo.....&#x & | 0 0 1 1 0 | * * * * * * * * 240 * * * * * | 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 | 0 0 0 0 1 0 0 1 1 0 0
......... ...x..... ......... & | 0 0 0 2 0 | * * * * * * * * * 120 * * * * | 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 | 0 0 0 0 1 0 1 0 0 1 1
......... ......... ...x..... & | 0 0 0 2 0 | * * * * * * * * * * 120 * * * | 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0 | 0 0 0 0 0 0 1 1 1 0 1
...oo....3...oo....5...oo....&#x & | 0 0 0 1 1 | * * * * * * * * * * * 240 * * | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 | 0 0 0 0 1 0 0 0 1 1 0
...o.o...3...o.o...5...o.o...&#x | 0 0 0 2 0 | * * * * * * * * * * * * 120 * | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 | 0 0 0 0 0 0 0 0 1 1 1
....x.... ......... ......... | 0 0 0 0 2 | * * * * * * * * * * * * * 60 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 | 0 0 0 0 2 0 0 0 1 0 0
------------------------------------+-------------------+-------------------------------------------------------+----------------------------------------------------------------------------+---------------------------------
o........3x........ ......... & | 3 0 0 0 0 | 3 0 0 0 0 0 0 0 0 0 0 0 0 0 | 40 * * * * * * * * * * * * * * * * * * * * | 1 1 0 0 0 0 0 0 0 0 0
......... x........5x........ & | 10 0 0 0 0 | 5 5 0 0 0 0 0 0 0 0 0 0 0 0 | * 24 * * * * * * * * * * * * * * * * * * * | 1 0 0 1 0 0 0 0 0 0 0
ox....... ......... .........&#x & | 1 2 0 0 0 | 0 0 2 1 0 0 0 0 0 0 0 0 0 0 | * * 120 * * * * * * * * * * * * * * * * * * | 0 1 1 0 0 0 0 0 0 0 0
......... xx....... .........&#x & | 2 2 0 0 0 | 1 0 2 0 1 0 0 0 0 0 0 0 0 0 | * * * 120 * * * * * * * * * * * * * * * * * | 0 1 0 1 0 0 0 0 0 0 0
......... ......... xx.......&#x & | 2 2 0 0 0 | 0 1 2 0 0 1 0 0 0 0 0 0 0 0 | * * * * 120 * * * * * * * * * * * * * * * * | 0 0 1 1 0 0 0 0 0 0 0
.x.......3.x....... ......... & | 0 6 0 0 0 | 0 0 0 3 3 0 0 0 0 0 0 0 0 0 | * * * * * 40 * * * * * * * * * * * * * * * | 0 1 0 0 1 0 0 0 0 0 0
.x....... ......... .x....... & | 0 4 0 0 0 | 0 0 0 2 0 2 0 0 0 0 0 0 0 0 | * * * * * * 60 * * * * * * * * * * * * * * | 0 0 1 0 0 1 0 0 0 0 0
......... .x.......5.x....... & | 0 10 0 0 0 | 0 0 0 0 5 5 0 0 0 0 0 0 0 0 | * * * * * * * 24 * * * * * * * * * * * * * | 0 0 0 1 0 0 1 0 0 0 0
.xo...... ......... .........&#x & | 0 2 1 0 0 | 0 0 0 1 0 0 2 0 0 0 0 0 0 0 | * * * * * * * * 120 * * * * * * * * * * * * | 0 0 0 0 1 1 0 0 0 0 0
......... ......... .xo......&#x & | 0 2 1 0 0 | 0 0 0 0 0 1 2 0 0 0 0 0 0 0 | * * * * * * * * * 120 * * * * * * * * * * * | 0 0 0 0 0 1 0 1 0 0 0
......... .x.x..... .........&#x & | 0 2 0 2 0 | 0 0 0 0 1 0 0 2 0 1 0 0 0 0 | * * * * * * * * * * 120 * * * * * * * * * * | 0 0 0 0 1 0 1 0 0 0 0
......... ......... .x.x.....&#x & | 0 2 0 2 0 | 0 0 0 0 0 1 0 2 0 0 1 0 0 0 | * * * * * * * * * * * 120 * * * * * * * * * | 0 0 0 0 0 0 1 1 0 0 0
.ooo.....3.ooo.....5.ooo.....&#x & | 0 1 1 1 0 | 0 0 0 0 0 0 1 1 1 0 0 0 0 0 | * * * * * * * * * * * * 240 * * * * * * * * | 0 0 0 0 1 0 0 1 0 0 0
......... ......... ..ox.....&#x & | 0 0 1 2 0 | 0 0 0 0 0 0 0 0 2 0 1 0 0 0 | * * * * * * * * * * * * * 120 * * * * * * * | 0 0 0 0 0 0 0 1 1 0 0
..ofx.... ......... .........&#x & | 0 0 1 2 2 | 0 0 0 0 0 0 0 0 2 0 0 2 0 1 | * * * * * * * * * * * * * * 120 * * * * * * | 0 0 0 0 1 0 0 0 1 0 0
......... ...x.....5...x.....&#x & | 0 0 0 10 0 | 0 0 0 0 0 0 0 0 0 5 5 0 0 0 | * * * * * * * * * * * * * * * 24 * * * * * | 0 0 0 0 0 0 1 0 0 0 1
......... ...xo.... .........&#x & | 0 0 0 2 1 | 0 0 0 0 0 0 0 0 0 1 0 2 0 0 | * * * * * * * * * * * * * * * * 120 * * * * | 0 0 0 0 1 0 0 0 0 1 0
......... ...x.x... .........&#x | 0 0 0 4 0 | 0 0 0 0 0 0 0 0 0 2 0 0 2 0 | * * * * * * * * * * * * * * * * * 60 * * * | 0 0 0 0 0 0 0 0 0 1 1
......... ......... ...x.x...&#x | 0 0 0 4 0 | 0 0 0 0 0 0 0 0 0 0 2 0 2 0 | * * * * * * * * * * * * * * * * * * 60 * * | 0 0 0 0 0 0 0 0 1 0 1
...ooo...3...ooo...5...ooo...&#x | 0 0 0 2 1 | 0 0 0 0 0 0 0 0 0 0 0 2 1 0 | * * * * * * * * * * * * * * * * * * * 120 * | 0 0 0 0 0 0 0 0 1 1 0
....x....3....o.... ......... | 0 0 0 0 3 | 0 0 0 0 0 0 0 0 0 0 0 0 0 3 | * * * * * * * * * * * * * * * * * * * * 20 | 0 0 0 0 2 0 0 0 0 0 0
------------------------------------+-------------------+-------------------------------------------------------+----------------------------------------------------------------------------+---------------------------------
o........3x........5x........ & ♦ 60 0 0 0 0 | 60 30 0 0 0 0 0 0 0 0 0 0 0 0 | 20 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2 * * * * * * * * * *
ox.......3xx....... .........&#x & ♦ 3 6 0 0 0 | 3 0 6 3 3 0 0 0 0 0 0 0 0 0 | 1 0 3 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | * 40 * * * * * * * * *
ox....... ......... xx.......&#x & ♦ 2 4 0 0 0 | 0 1 4 2 0 2 0 0 0 0 0 0 0 0 | 0 0 2 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | * * 60 * * * * * * * *
......... xx.......5xx.......&#x & ♦ 10 10 0 0 0 | 5 5 10 0 5 5 0 0 0 0 0 0 0 0 | 0 1 0 5 5 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | * * * 24 * * * * * * *
.xofx....3.xFxo.... .........&#xt & ♦ 0 6 3 6 3 | 0 0 0 3 3 0 6 6 6 3 0 6 0 3 | 0 0 0 0 0 1 0 0 3 0 3 0 6 0 3 0 3 0 0 0 1 | * * * * 40 * * * * * *
.xo...... ......... .xo......&#x & ♦ 0 4 1 0 0 | 0 0 0 2 0 2 4 0 0 0 0 0 0 0 | 0 0 0 0 0 0 1 0 2 2 0 0 0 0 0 0 0 0 0 0 0 | * * * * * 60 * * * * *
......... .x.x.....5.x.x.....&#x & ♦ 0 10 0 10 0 | 0 0 0 0 5 5 0 10 0 5 5 0 0 0 | 0 0 0 0 0 0 0 1 0 0 5 5 0 0 0 1 0 0 0 0 0 | * * * * * * 24 * * * *
......... ......... .xox.....&#x & ♦ 0 2 1 2 0 | 0 0 0 0 0 1 2 2 2 0 1 0 0 0 | 0 0 0 0 0 0 0 0 0 1 0 1 2 1 0 0 0 0 0 0 0 | * * * * * * * 120 * * *
..ofxfo.. ......... ..oxFxo..&#xt ♦ 0 0 2 8 4 | 0 0 0 0 0 0 0 0 8 0 4 8 4 2 | 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 0 0 0 2 4 0 | * * * * * * * * 30 * *
......... ...xox... .........&#x ♦ 0 0 0 4 1 | 0 0 0 0 0 0 0 0 0 2 0 4 2 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 2 0 | * * * * * * * * * 60 *
......... ...x.x...5...x.x...&#x ♦ 0 0 0 20 0 | 0 0 0 0 0 0 0 0 0 10 10 0 10 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 5 5 0 0 | * * * * * * * * * * 12
© 2004-2025 | top of page |