Acronym | ... |
Name | oxofxfoxo3xxFxoxFxx5xxoxFxoxx&#xt |
Face vector | 720, 2160, 1912, 472 |
Confer |
|
The relation to ex runs as follows: ex in axial icosahedral subsymmetry can be given as VFfxo2oxofo3oooox5ooxoo&#zx = oxofofoxo3ooooxoooo5ooxoooxoo&#xt (F = ff = f+x, V = uf = f+f). That will be transformed into VFfxo2oxofx3oooo(-x)5ooxof&#zx. And finally into VFfxo2oxofx3oofo(-x)5oo(-x)of&#zx. Then a Stott expansion wrt. the third and fourth nodes produces this polychoron.
Incidence matrix according to Dynkin symbol
oxofxfoxo3xxFxoxFxx5xxoxFxoxx&#xt → height(1,2) = height(3,4) = height(6,7) = height(8,9) = (sqrt(5)-1)/4 = 0.309017 height(2,3) = height(4,5) = height(5,6) = height(7,8) = 1/2 (tid || pseudo grid || pseudo F-id || pseudo (f,x,x)-grid || pseudo (x,F)-srid || pseudo (f,x,x)-grid || pseudo F-id || pseudo grid || tid) o........3o........5o........ & | 120 * * * * | 2 1 2 0 0 0 0 0 0 0 0 0 0 0 | 1 2 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 1 1 2 0 0 0 0 0 0 0 .o.......3.o.......5.o....... & | * 240 * * * | 0 0 1 1 1 1 1 1 0 0 0 0 0 0 | 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 | 0 1 1 1 1 1 1 1 0 0 0 ..o......3..o......5..o...... & | * * 60 * * | 0 0 0 0 0 0 4 0 4 0 0 0 0 0 | 0 0 0 0 0 0 0 0 2 2 0 0 4 2 2 0 0 0 0 0 0 | 0 0 0 0 2 1 0 2 1 0 0 ...o.....3...o.....5...o..... & | * * * 240 * | 0 0 0 0 0 0 0 1 1 1 1 1 1 0 | 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 | 0 0 0 0 1 0 1 1 1 1 1 ....o....3....o....5....o.... | * * * * 60 | 0 0 0 0 0 0 0 0 0 0 0 4 0 2 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 2 0 0 2 1 | 0 0 0 0 2 0 0 0 2 1 0 ------------------------------------+-------------------+-------------------------------------------------------+----------------------------------------------------------------------------+--------------------------------- ......... x........ ......... & | 2 0 0 0 0 | 120 * * * * * * * * * * * * * | 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 1 0 1 0 0 0 0 0 0 0 ......... ......... x........ & | 2 0 0 0 0 | * 60 * * * * * * * * * * * * | 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 0 1 2 0 0 0 0 0 0 0 oo.......3oo.......5oo.......&#x & | 1 1 0 0 0 | * * 240 * * * * * * * * * * * | 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 1 1 1 0 0 0 0 0 0 0 .x....... ......... ......... & | 0 2 0 0 0 | * * * 120 * * * * * * * * * * | 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | 0 1 1 0 1 1 0 0 0 0 0 ......... .x....... ......... & | 0 2 0 0 0 | * * * * 120 * * * * * * * * * | 0 0 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 | 0 1 0 1 1 0 1 0 0 0 0 ......... ......... .x....... & | 0 2 0 0 0 | * * * * * 120 * * * * * * * * | 0 0 0 0 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 | 0 0 1 1 0 1 1 1 0 0 0 .oo......3.oo......5.oo......&#x & | 0 1 1 0 0 | * * * * * * 240 * * * * * * * | 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 | 0 0 0 0 1 1 0 1 0 0 0 .o.o.....3.o.o.....5.o.o.....&#x & | 0 1 0 1 0 | * * * * * * * 240 * * * * * * | 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 | 0 0 0 0 1 0 1 1 0 0 0 ..oo.....3..oo.....5..oo.....&#x & | 0 0 1 1 0 | * * * * * * * * 240 * * * * * | 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 | 0 0 0 0 1 0 0 1 1 0 0 ......... ...x..... ......... & | 0 0 0 2 0 | * * * * * * * * * 120 * * * * | 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 | 0 0 0 0 1 0 1 0 0 1 1 ......... ......... ...x..... & | 0 0 0 2 0 | * * * * * * * * * * 120 * * * | 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0 | 0 0 0 0 0 0 1 1 1 0 1 ...oo....3...oo....5...oo....&#x & | 0 0 0 1 1 | * * * * * * * * * * * 240 * * | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 | 0 0 0 0 1 0 0 0 1 1 0 ...o.o...3...o.o...5...o.o...&#x | 0 0 0 2 0 | * * * * * * * * * * * * 120 * | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 | 0 0 0 0 0 0 0 0 1 1 1 ....x.... ......... ......... | 0 0 0 0 2 | * * * * * * * * * * * * * 60 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 | 0 0 0 0 2 0 0 0 1 0 0 ------------------------------------+-------------------+-------------------------------------------------------+----------------------------------------------------------------------------+--------------------------------- o........3x........ ......... & | 3 0 0 0 0 | 3 0 0 0 0 0 0 0 0 0 0 0 0 0 | 40 * * * * * * * * * * * * * * * * * * * * | 1 1 0 0 0 0 0 0 0 0 0 ......... x........5x........ & | 10 0 0 0 0 | 5 5 0 0 0 0 0 0 0 0 0 0 0 0 | * 24 * * * * * * * * * * * * * * * * * * * | 1 0 0 1 0 0 0 0 0 0 0 ox....... ......... .........&#x & | 1 2 0 0 0 | 0 0 2 1 0 0 0 0 0 0 0 0 0 0 | * * 120 * * * * * * * * * * * * * * * * * * | 0 1 1 0 0 0 0 0 0 0 0 ......... xx....... .........&#x & | 2 2 0 0 0 | 1 0 2 0 1 0 0 0 0 0 0 0 0 0 | * * * 120 * * * * * * * * * * * * * * * * * | 0 1 0 1 0 0 0 0 0 0 0 ......... ......... xx.......&#x & | 2 2 0 0 0 | 0 1 2 0 0 1 0 0 0 0 0 0 0 0 | * * * * 120 * * * * * * * * * * * * * * * * | 0 0 1 1 0 0 0 0 0 0 0 .x.......3.x....... ......... & | 0 6 0 0 0 | 0 0 0 3 3 0 0 0 0 0 0 0 0 0 | * * * * * 40 * * * * * * * * * * * * * * * | 0 1 0 0 1 0 0 0 0 0 0 .x....... ......... .x....... & | 0 4 0 0 0 | 0 0 0 2 0 2 0 0 0 0 0 0 0 0 | * * * * * * 60 * * * * * * * * * * * * * * | 0 0 1 0 0 1 0 0 0 0 0 ......... .x.......5.x....... & | 0 10 0 0 0 | 0 0 0 0 5 5 0 0 0 0 0 0 0 0 | * * * * * * * 24 * * * * * * * * * * * * * | 0 0 0 1 0 0 1 0 0 0 0 .xo...... ......... .........&#x & | 0 2 1 0 0 | 0 0 0 1 0 0 2 0 0 0 0 0 0 0 | * * * * * * * * 120 * * * * * * * * * * * * | 0 0 0 0 1 1 0 0 0 0 0 ......... ......... .xo......&#x & | 0 2 1 0 0 | 0 0 0 0 0 1 2 0 0 0 0 0 0 0 | * * * * * * * * * 120 * * * * * * * * * * * | 0 0 0 0 0 1 0 1 0 0 0 ......... .x.x..... .........&#x & | 0 2 0 2 0 | 0 0 0 0 1 0 0 2 0 1 0 0 0 0 | * * * * * * * * * * 120 * * * * * * * * * * | 0 0 0 0 1 0 1 0 0 0 0 ......... ......... .x.x.....&#x & | 0 2 0 2 0 | 0 0 0 0 0 1 0 2 0 0 1 0 0 0 | * * * * * * * * * * * 120 * * * * * * * * * | 0 0 0 0 0 0 1 1 0 0 0 .ooo.....3.ooo.....5.ooo.....&#x & | 0 1 1 1 0 | 0 0 0 0 0 0 1 1 1 0 0 0 0 0 | * * * * * * * * * * * * 240 * * * * * * * * | 0 0 0 0 1 0 0 1 0 0 0 ......... ......... ..ox.....&#x & | 0 0 1 2 0 | 0 0 0 0 0 0 0 0 2 0 1 0 0 0 | * * * * * * * * * * * * * 120 * * * * * * * | 0 0 0 0 0 0 0 1 1 0 0 ..ofx.... ......... .........&#x & | 0 0 1 2 2 | 0 0 0 0 0 0 0 0 2 0 0 2 0 1 | * * * * * * * * * * * * * * 120 * * * * * * | 0 0 0 0 1 0 0 0 1 0 0 ......... ...x.....5...x.....&#x & | 0 0 0 10 0 | 0 0 0 0 0 0 0 0 0 5 5 0 0 0 | * * * * * * * * * * * * * * * 24 * * * * * | 0 0 0 0 0 0 1 0 0 0 1 ......... ...xo.... .........&#x & | 0 0 0 2 1 | 0 0 0 0 0 0 0 0 0 1 0 2 0 0 | * * * * * * * * * * * * * * * * 120 * * * * | 0 0 0 0 1 0 0 0 0 1 0 ......... ...x.x... .........&#x | 0 0 0 4 0 | 0 0 0 0 0 0 0 0 0 2 0 0 2 0 | * * * * * * * * * * * * * * * * * 60 * * * | 0 0 0 0 0 0 0 0 0 1 1 ......... ......... ...x.x...&#x | 0 0 0 4 0 | 0 0 0 0 0 0 0 0 0 0 2 0 2 0 | * * * * * * * * * * * * * * * * * * 60 * * | 0 0 0 0 0 0 0 0 1 0 1 ...ooo...3...ooo...5...ooo...&#x | 0 0 0 2 1 | 0 0 0 0 0 0 0 0 0 0 0 2 1 0 | * * * * * * * * * * * * * * * * * * * 120 * | 0 0 0 0 0 0 0 0 1 1 0 ....x....3....o.... ......... | 0 0 0 0 3 | 0 0 0 0 0 0 0 0 0 0 0 0 0 3 | * * * * * * * * * * * * * * * * * * * * 20 | 0 0 0 0 2 0 0 0 0 0 0 ------------------------------------+-------------------+-------------------------------------------------------+----------------------------------------------------------------------------+--------------------------------- o........3x........5x........ & ♦ 60 0 0 0 0 | 60 30 0 0 0 0 0 0 0 0 0 0 0 0 | 20 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2 * * * * * * * * * * ox.......3xx....... .........&#x & ♦ 3 6 0 0 0 | 3 0 6 3 3 0 0 0 0 0 0 0 0 0 | 1 0 3 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | * 40 * * * * * * * * * ox....... ......... xx.......&#x & ♦ 2 4 0 0 0 | 0 1 4 2 0 2 0 0 0 0 0 0 0 0 | 0 0 2 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | * * 60 * * * * * * * * ......... xx.......5xx.......&#x & ♦ 10 10 0 0 0 | 5 5 10 0 5 5 0 0 0 0 0 0 0 0 | 0 1 0 5 5 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | * * * 24 * * * * * * * .xofx....3.xFxo.... .........&#xt & ♦ 0 6 3 6 3 | 0 0 0 3 3 0 6 6 6 3 0 6 0 3 | 0 0 0 0 0 1 0 0 3 0 3 0 6 0 3 0 3 0 0 0 1 | * * * * 40 * * * * * * .xo...... ......... .xo......&#x & ♦ 0 4 1 0 0 | 0 0 0 2 0 2 4 0 0 0 0 0 0 0 | 0 0 0 0 0 0 1 0 2 2 0 0 0 0 0 0 0 0 0 0 0 | * * * * * 60 * * * * * ......... .x.x.....5.x.x.....&#x & ♦ 0 10 0 10 0 | 0 0 0 0 5 5 0 10 0 5 5 0 0 0 | 0 0 0 0 0 0 0 1 0 0 5 5 0 0 0 1 0 0 0 0 0 | * * * * * * 24 * * * * ......... ......... .xox.....&#x & ♦ 0 2 1 2 0 | 0 0 0 0 0 1 2 2 2 0 1 0 0 0 | 0 0 0 0 0 0 0 0 0 1 0 1 2 1 0 0 0 0 0 0 0 | * * * * * * * 120 * * * ..ofxfo.. ......... ..oxFxo..&#xt ♦ 0 0 2 8 4 | 0 0 0 0 0 0 0 0 8 0 4 8 4 2 | 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 0 0 0 2 4 0 | * * * * * * * * 30 * * ......... ...xox... .........&#x ♦ 0 0 0 4 1 | 0 0 0 0 0 0 0 0 0 2 0 4 2 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 2 0 | * * * * * * * * * 60 * ......... ...x.x...5...x.x...&#x ♦ 0 0 0 20 0 | 0 0 0 0 0 0 0 0 0 10 10 0 10 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 5 5 0 0 | * * * * * * * * * * 12
© 2004-2025 | top of page |