Acronym srit
Name small rhombated tesseract,
cantellated tesseract
 
  ©  
Cross sections
 ©
Circumradius sqrt[2+sqrt(2)] = 1.847759
Vertex figure
 ©
Vertex layers
LayerSymmetrySubsymmetries
 o3o3o4o o3o3o . o3o . o o . o4o . o3o4o
1o3x3o4x o3x3o .
oct first
o3x . x
trip first
o . o4x
{4} first
. x3o4x
sirco first
2 o3x3q . x3o . w x . x4x . o3x4x
3 o3w3o . o3w . x o . o4w . o3x4x
4 x3o3w . x3q . w w . x4x . x3o4x
opposite sirco
5a x3q3x . x3w . x W . o4x  
5b q . o4w
6 w3o3x . w3o . w w . x4x
7 o3w3o . o3w . w o . o4w
8 q3x3o . w3x . x x . x4x
9 o3x3o .
opposite oct
q3x . w o . o4x
opposite {4}
10   w3o . x  
11 o3x . w
12 x3o . x
opposite trip
(W=qw=u+q=x+w)
Lace city
in approx. ASCII-art
 ©  
x4o x4x   x4x x4o
                 
x4x w4o   w4o x4x
                 
                 
x4x w4o   w4o x4x
                 
x4o x4x   x4x x4o
      x3o     x3q     w3o o3w     q3x     o3x      
                                                   
                                                   
                                                   
                                                   
                                                   
o3x     o3w         x3w     w3x         w3o     x3o
                                                   
                                                   
                                                   
                                                   
                                                   
                                                   
                                                   
o3x     o3w         x3w     w3x         w3o     x3o
                                                   
                                                   
                                                   
                                                   
                                                   
      x3o     x3q     w3o o3w     q3x     o3x      
Coordinates ((1+sqrt(2))/2, (1+sqrt(2))/2, 1/2, 1/2)   & all permutations, all changes of sign
General of army (is itself convex)
Colonel of regiment (is itself locally convex – uniform polychoral members:
by cells: oct op sirco socco sroh tic trip
pinpith 1624080032
srit 160800032
rawvatoth 16008080
garpit 02400800
spript 024000832
& others)
Dihedral angles
  • at {3} between oct and trip:   150°
  • at {4} between sirco and trip:   arccos(-1/sqrt(3)) = 125.264390°
  • at {3} between oct and sirco:   120°
  • at {4} between sirco and sirco:   90°
Pattern
(parts of total size:
8x8 squares)
A---1---A---2---A---1---A---2---A-...
| \ : / |       | \ : / |       |    
1==B,B==1===3===1==B,B==1===3===1=   
| / : \ |       | / : \ |       |    
A---1---A---2---A---1---A---2---A-...
|   :   |       |   :   |       |    
2   3   2       2   3   2       2    
|   :   |       |   :   |       |    
A---1---A---2---A---1---A---2---A-...
| \ : / |       | \ : / |       |    
1==B,B==1===3===1==B,B==1===3===1=   
| / : \ |       | / : \ |       |    
A---1---A---2---A---1---A---2---A-...
|   :   |       |   :   |       |    
2   3   2       2   3   2       2    
|   :   |       |   :   |       |    
A---1---A---2---A---1---A---2---A-...
| \ : / |       | \ : / |       |    
Confer
Grünbaumian relatives:
2srit   2srit+48{8}+128{3}   2srit+64trip  
uniform relative:
spic   odip  
segmentochora:
sircoatic   ticcup   squipuf  
related CRFs:
cyted srit   cyte gysrit   bicyte gysrit   bipgy srit   cyted spic   pexic   bicyte ausodip   pacsrit   esircoatic  
decompositions:
ico || srit   tes || srit  
general polytopal classes:
partial Stott expansions  
External
links
hedrondude   wikipedia   WikiChoron   quickfur

As abstract polytope srit is isomorphic to qrit, thereby replacing sirco by querco.

Augmenting octasircoes onto the sirco would lead to the spic (which would have an even larger symmetry)! Augmenting only a cycle of 4 of those results in cyted spic.

Just as tes can variously be seen as having full tessic symmetry or as having only a subsymmetric 4-duoprismatic one (fixing the 4-prism axis in each cube) here correspondingly the sircoes could be aligned into 2 great circles of 4 each. Moreover, the connecting squares are incident to 2 sircoes (face), 4 trips (sides), and 4 octs (vertices). The sectioning facet underneath those squares therfore is an op, i.e. cutting off a squipuf each. These 2 duoprismatic great circles thus show that srit can be further diminished by 4 of those within each ring, then resulting finally in an odip!

Note that srit can be thought of as the external blend of 1 ico + 16 opes + 32 triddips + 8 octasircoes. This decomposition is described as the degenerate segmentoteron oo3xx3oo4ox&#x. – Alternatively srit can be decomposed into 1 tes + 16 octpies + 32 tepes + 8 cubasircoes according to oo3ox3oo4xx&#x.


Incidence matrix according to Dynkin symbol

o3x3o4x

. . . . | 96 |   4  2 |  2  2  4  1 |  1  2 2  (A),(B)
--------+----+--------+-------------+--------
. x . . |  2 | 192  * |  1  1  1  0 |  1  1 1  (1),(/),(\)
. . . x |  2 |   * 96 |  0  0  2  1 |  0  1 2  (2),(3)
--------+----+--------+-------------+--------
o3x . . |  3 |   3  0 | 64  *  *  * |  1  1 0
. x3o . |  3 |   3  0 |  * 64  *  * |  1  0 1
. x . x |  4 |   2  2 |  *  * 96  * |  0  1 1
. . o4x |  4 |   0  4 |  *  *  * 24 |  0  0 2
--------+----+--------+-------------+--------
o3x3o .   6 |  12  0 |  4  4  0  0 | 16  * *
o3x . x   6 |   6  3 |  2  0  3  0 |  * 32 *
. x3o4x  24 |  24 24 |  0  8 12  6 |  *  * 8

snubbed forms: o3β3o4x, o3x3o4s, o3β3o4β

o3x3/2o4/3x

. .   .   . | 96 |   4  2 |  2  2  4  1 |  1  2 2
------------+----+--------+-------------+--------
. x   .   . |  2 | 192  * |  1  1  1  0 |  1  1 1
. .   .   x |  2 |   * 96 |  0  0  2  1 |  0  1 2
------------+----+--------+-------------+--------
o3x   .   . |  3 |   3  0 | 64  *  *  * |  1  1 0
. x3/2o   . |  3 |   3  0 |  * 64  *  * |  1  0 1
. x   .   x |  4 |   2  2 |  *  * 96  * |  0  1 1
. .   o4/3x |  4 |   0  4 |  *  *  * 24 |  0  0 2
------------+----+--------+-------------+--------
o3x3/2o   .   6 |  12  0 |  4  4  0  0 | 16  * *
o3x   .   x   6 |   6  3 |  2  0  3  0 |  * 32 *
. x3/2o4/3x  24 |  24 24 |  0  8 12  6 |  *  * 8

o3/2x3o4x

.   . . . | 96 |   4  2 |  2  2  4  1 |  1  2 2
----------+----+--------+-------------+--------
.   x . . |  2 | 192  * |  1  1  1  0 |  1  1 1
.   . . x |  2 |   * 96 |  0  0  2  1 |  0  1 2
----------+----+--------+-------------+--------
o3/2x . . |  3 |   3  0 | 64  *  *  * |  1  1 0
.   x3o . |  3 |   3  0 |  * 64  *  * |  1  0 1
.   x . x |  4 |   2  2 |  *  * 96  * |  0  1 1
.   . o4x |  4 |   0  4 |  *  *  * 24 |  0  0 2
----------+----+--------+-------------+--------
o3/2x3o .   6 |  12  0 |  4  4  0  0 | 16  * *
o3/2x . x   6 |   6  3 |  2  0  3  0 |  * 32 *
.   x3o4x  24 |  24 24 |  0  8 12  6 |  *  * 8

o3/2x3/2o4/3x

.   .   .   . | 96 |   4  2 |  2  2  4  1 |  1  2 2
--------------+----+--------+-------------+--------
.   x   .   . |  2 | 192  * |  1  1  1  0 |  1  1 1
.   .   .   x |  2 |   * 96 |  0  0  2  1 |  0  1 2
--------------+----+--------+-------------+--------
o3/2x   .   . |  3 |   3  0 | 64  *  *  * |  1  1 0
.   x3/2o   . |  3 |   3  0 |  * 64  *  * |  1  0 1
.   x   .   x |  4 |   2  2 |  *  * 96  * |  0  1 1
.   .   o4/3x |  4 |   0  4 |  *  *  * 24 |  0  0 2
--------------+----+--------+-------------+--------
o3/2x3/2o   .   6 |  12  0 |  4  4  0  0 | 16  * *
o3/2x   .   x   6 |   6  3 |  2  0  3  0 |  * 32 *
.   x3/2o4/3x  24 |  24 24 |  0  8 12  6 |  *  * 8

xoox3oxxo4xxxx&#xt   → outer heights = 1/sqrt(2) = 0.707107
                       inner height = 1
(sirco || pseudo tic || pseudo tic || sirco)

o...3o...4o...     | 24  *  *  * |  2  2  2  0  0  0  0  0  0  0  0 | 1  2 1  2  1  2 0  0  0 0  0  0  0 0  0 0 | 1 1  2 1 0 0  0 0
.o..3.o..4.o..     |  * 24  *  * |  0  0  2  2  1  1  0  0  0  0  0 | 0  0 0  1  2  2 1  2  1 0  0  0  0 0  0 0 | 0 1  1 2 1 0  0 0
..o.3..o.4..o.     |  *  * 24  * |  0  0  0  0  0  1  2  1  2  0  0 | 0  0 0  0  0  0 0  2  1 1  1  2  2 0  0 0 | 0 0  0 2 1 1  1 0
...o3...o4...o     |  *  *  * 24 |  0  0  0  0  0  0  0  0  2  2  2 | 0  0 0  0  0  0 0  0  0 0  2  1  2 1  2 1 | 0 0  0 1 0 1  2 1
-------------------+-------------+----------------------------------+-------------------------------------------+------------------
x... .... ....     |  2  0  0  0 | 24  *  *  *  *  *  *  *  *  *  * | 1  1 0  1  0  0 0  0  0 0  0  0  0 0  0 0 | 1 1  1 0 0 0  0 0
.... .... x...     |  2  0  0  0 |  * 24  *  *  *  *  *  *  *  *  * | 0  1 1  0  0  1 0  0  0 0  0  0  0 0  0 0 | 1 0  1 1 0 0  0 0
oo..3oo..4oo..&#x  |  1  1  0  0 |  *  * 48  *  *  *  *  *  *  *  * | 0  0 0  1  1  1 0  0  0 0  0  0  0 0  0 0 | 0 1  1 1 0 0  0 0
.... .x.. ....     |  0  2  0  0 |  *  *  * 24  *  *  *  *  *  *  * | 0  0 0  0  1  0 1  1  0 0  0  0  0 0  0 0 | 0 1  0 1 1 0  0 0
.... .... .x..     |  0  2  0  0 |  *  *  *  * 12  *  *  *  *  *  * | 0  0 0  0  0  2 0  0  1 0  0  0  0 0  0 0 | 0 0  1 2 0 0  0 0
.oo.3.oo.4.oo.&#x  |  0  1  1  0 |  *  *  *  *  * 24  *  *  *  *  * | 0  0 0  0  0  0 0  2  1 0  0  0  0 0  0 0 | 0 0  0 2 1 0  0 0
.... ..x. ....     |  0  0  2  0 |  *  *  *  *  *  * 24  *  *  *  * | 0  0 0  0  0  0 0  1  0 1  0  1  0 0  0 0 | 0 0  0 1 1 1  0 0
.... .... ..x.     |  0  0  2  0 |  *  *  *  *  *  *  * 12  *  *  * | 0  0 0  0  0  0 0  0  1 0  0  0  2 0  0 0 | 0 0  0 2 0 0  1 0
..oo3..oo4..oo&#x  |  0  0  1  1 |  *  *  *  *  *  *  *  * 48  *  * | 0  0 0  0  0  0 0  0  0 0  1  1  1 0  0 0 | 0 0  0 1 0 1  1 0
...x .... ....     |  0  0  0  2 |  *  *  *  *  *  *  *  *  * 24  * | 0  0 0  0  0  0 0  0  0 0  1  0  0 1  1 0 | 0 0  0 0 0 1  1 1
.... .... ...x     |  0  0  0  2 |  *  *  *  *  *  *  *  *  *  * 24 | 0  0 0  0  0  0 0  0  0 0  0  0  1 0  1 1 | 0 0  0 1 0 0  1 1
-------------------+-------------+----------------------------------+-------------------------------------------+------------------
x...3o... ....     |  3  0  0  0 |  3  0  0  0  0  0  0  0  0  0  0 | 8  * *  *  *  * *  *  * *  *  *  * *  * * | 1 1  0 0 0 0  0 0
x... .... x...     |  4  0  0  0 |  2  2  0  0  0  0  0  0  0  0  0 | * 12 *  *  *  * *  *  * *  *  *  * *  * * | 1 0  1 0 0 0  0 0
.... o...4x...     |  4  0  0  0 |  0  4  0  0  0  0  0  0  0  0  0 | *  * 6  *  *  * *  *  * *  *  *  * *  * * | 1 0  0 1 0 0  0 0
xo.. .... ....&#x  |  2  1  0  0 |  1  0  2  0  0  0  0  0  0  0  0 | *  * * 24  *  * *  *  * *  *  *  * *  * * | 0 1  1 0 0 0  0 0
.... ox.. ....&#x  |  1  2  0  0 |  0  0  2  1  0  0  0  0  0  0  0 | *  * *  * 24  * *  *  * *  *  *  * *  * * | 0 1  0 1 0 0  0 0
.... .... xx..&#x  |  2  2  0  0 |  0  1  2  0  1  0  0  0  0  0  0 | *  * *  *  * 24 *  *  * *  *  *  * *  * * | 0 0  1 1 0 0  0 0
.o..3.x.. ....     |  0  3  0  0 |  0  0  0  3  0  0  0  0  0  0  0 | *  * *  *  *  * 8  *  * *  *  *  * *  * * | 0 1  0 0 1 0  0 0
.... .xx. ....&#x  |  0  2  2  0 |  0  0  0  1  0  2  1  0  0  0  0 | *  * *  *  *  * * 24  * *  *  *  * *  * * | 0 0  0 1 1 0  0 0
.... .... .xx.&#x  |  0  2  2  0 |  0  0  0  0  1  2  0  1  0  0  0 | *  * *  *  *  * *  * 12 *  *  *  * *  * * | 0 0  0 2 0 0  0 0
..o.3..x. ....     |  0  0  3  0 |  0  0  0  0  0  0  3  0  0  0  0 | *  * *  *  *  * *  *  * 8  *  *  * *  * * | 0 0  0 0 1 1  0 0
..ox .... ....&#x  |  0  0  1  2 |  0  0  0  0  0  0  0  0  2  1  0 | *  * *  *  *  * *  *  * * 24  *  * *  * * | 0 0  0 0 0 1  1 0
.... ..xo ....&#x  |  0  0  2  1 |  0  0  0  0  0  0  1  0  2  0  0 | *  * *  *  *  * *  *  * *  * 24  * *  * * | 0 0  0 1 0 1  0 0
.... .... ..xx&#x  |  0  0  2  2 |  0  0  0  0  0  0  0  1  2  0  1 | *  * *  *  *  * *  *  * *  *  * 24 *  * * | 0 0  0 1 0 0  1 0
...x3...o ....     |  0  0  0  3 |  0  0  0  0  0  0  0  0  0  3  0 | *  * *  *  *  * *  *  * *  *  *  * 8  * * | 0 0  0 0 0 1  0 1
...x .... ...x     |  0  0  0  4 |  0  0  0  0  0  0  0  0  0  2  2 | *  * *  *  *  * *  *  * *  *  *  * * 12 * | 0 0  0 0 0 0  1 1
.... ...o4...x     |  0  0  0  4 |  0  0  0  0  0  0  0  0  0  0  4 | *  * *  *  *  * *  *  * *  *  *  * *  * 6 | 0 0  0 1 0 0  0 1
-------------------+-------------+----------------------------------+-------------------------------------------+------------------
x...3o...4x...      24  0  0  0 | 24 24  0  0  0  0  0  0  0  0  0 | 8 12 6  0  0  0 0  0  0 0  0  0  0 0  0 0 | 1 *  * * * *  * *
xo..3ox.. ....&#x    3  3  0  0 |  3  0  6  3  0  0  0  0  0  0  0 | 1  0 0  3  3  0 1  0  0 0  0  0  0 0  0 0 | * 8  * * * *  * *
xo.. .... xx..&#x    4  2  0  0 |  2  2  4  0  1  0  0  0  0  0  0 | 0  1 0  2  0  2 0  0  0 0  0  0  0 0  0 0 | * * 12 * * *  * *
.... oxxo4xxxx&#xt   4  8  8  4 |  0  4  8  4  4  8  4  4  8  0  4 | 0  0 1  0  4  4 0  4  4 0  0  4  4 0  0 1 | * *  * 6 * *  * *
.oo.3.xx. ....&#x    0  3  3  0 |  0  0  0  3  0  3  3  0  0  0  0 | 0  0 0  0  0  0 1  3  0 1  0  0  0 0  0 0 | * *  * * 8 *  * *
..ox3..xo ....&#x    0  0  3  3 |  0  0  0  0  0  0  3  0  6  3  0 | 0  0 0  0  0  0 0  0  0 1  3  3  0 1  0 0 | * *  * * * 8  * *
..ox .... ..xx&#x    0  0  2  4 |  0  0  0  0  0  0  0  1  4  2  2 | 0  0 0  0  0  0 0  0  0 0  2  0  2 0  1 0 | * *  * * * * 12 *
...x3...o4...x       0  0  0 24 |  0  0  0  0  0  0  0  0  0 24 24 | 0  0 0  0  0  0 0  0  0 0  0  0  0 8 12 6 | * *  * * * *  * 1
or
o...3o...4o...     & | 48  * |  2  2  2  0  0  0 |  1  2  1  2  1  2  0  0  0 | 1  1  2 1 0
.o..3.o..4.o..     & |  * 48 |  0  0  2  2  1  1 |  0  0  0  1  2  2  1  2  1 | 0  1  1 2 1
---------------------+-------+-------------------+----------------------------+------------
x... .... ....     & |  2  0 | 48  *  *  *  *  * |  1  1  0  1  0  0  0  0  0 | 1  1  1 0 0
.... .... x...     & |  2  0 |  * 48  *  *  *  * |  0  1  1  0  0  1  0  0  0 | 1  0  1 1 0
oo..3oo..4oo..&#x  & |  1  1 |  *  * 96  *  *  * |  0  0  0  1  1  1  0  0  0 | 0  1  1 1 0
.... .x.. ....     & |  0  2 |  *  *  * 48  *  * |  0  0  0  0  1  0  1  1  0 | 0  1  0 1 1
.... .... .x..     & |  0  2 |  *  *  *  * 24  * |  0  0  0  0  0  2  0  0  1 | 0  0  1 2 0
.oo.3.oo.4.oo.&#x    |  0  2 |  *  *  *  *  * 24 |  0  0  0  0  0  0  0  2  1 | 0  0  0 2 1
---------------------+-------+-------------------+----------------------------+------------
x...3o... ....     & |  3  0 |  3  0  0  0  0  0 | 16  *  *  *  *  *  *  *  * | 1  1  0 0 0
x... .... x...     & |  4  0 |  2  2  0  0  0  0 |  * 24  *  *  *  *  *  *  * | 1  0  1 0 0
.... o...4x...     & |  4  0 |  0  4  0  0  0  0 |  *  * 12  *  *  *  *  *  * | 1  0  0 1 0
xo.. .... ....&#x  & |  2  1 |  1  0  2  0  0  0 |  *  *  * 48  *  *  *  *  * | 0  1  1 0 0
.... ox.. ....&#x  & |  1  2 |  0  0  2  1  0  0 |  *  *  *  * 48  *  *  *  * | 0  1  0 1 0
.... .... xx..&#x  & |  2  2 |  0  1  2  0  1  0 |  *  *  *  *  * 48  *  *  * | 0  0  1 1 0
.o..3.x.. ....     & |  0  3 |  0  0  0  3  0  0 |  *  *  *  *  *  * 16  *  * | 0  1  0 0 1
.... .xx. ....&#x    |  0  4 |  0  0  0  2  0  2 |  *  *  *  *  *  *  * 24  * | 0  0  0 1 1
.... .... .xx.&#x    |  0  4 |  0  0  0  0  2  2 |  *  *  *  *  *  *  *  * 12 | 0  0  0 2 0
---------------------+-------+-------------------+----------------------------+------------
x...3o...4x...     &  24  0 | 24 24  0  0  0  0 |  8 12  6  0  0  0  0  0  0 | 2  *  * * *
xo..3ox.. ....&#x  &   3  3 |  3  0  6  3  0  0 |  1  0  0  3  3  0  1  0  0 | * 16  * * *
xo.. .... xx..&#x  &   4  2 |  2  2  4  0  1  0 |  0  1  0  2  0  2  0  0  0 | *  * 24 * *
.... oxxo4xxxx&#xt     8 16 |  0  8 16  8  8  8 |  0  0  2  0  8  8  0  4  4 | *  *  * 6 *
.oo.3.xx. ....&#x      0  6 |  0  0  0  6  0  3 |  0  0  0  0  0  0  2  3  0 | *  *  * * 8

oqowxxooo3xxwoqowxx3oooxxwoqo&#xt   → height(1,2) = height(2,3) = height(4,5) = height(5,6) = height(7,8) = height(8,9) = 1/2
                                      height(3,4) = height(6,7) = [sqrt(2)-1]/2 = 0.207107
(oct || (q,x)-tut || w-oct || (w,x)-co || (x,q,x)-toe || (x,w)-co || w-oct || inv (q,x)-tut || oct)

o........3o........3o........     | 6  * *  *  *  * *  * * |  4  2  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 | 2 2  4 1 0  0  0  0  0  0 0  0  0  0  0  0  0 0  0  0 0 0  0 0 0 | 1 2 2 0  0 0 0  0 0 0 0
.o.......3.o.......3.o.......     | * 12 *  *  *  * *  * * |  0  1  2  1  2  0  0  0  0  0  0  0  0  0  0  0  0  0 | 0 0  2 1 1  2  1  2  0  0 0  0  0  0  0  0  0 0  0  0 0 0  0 0 0 | 0 1 2 1  1 0 0  0 0 0 0
..o......3..o......3..o......     | *  * 6  *  *  * *  * * |  0  0  0  2  0  4  0  0  0  0  0  0  0  0  0  0  0  0 | 0 0  0 1 0  0  0  4  2  2 0  0  0  0  0  0  0 0  0  0 0 0  0 0 0 | 0 0 2 0  2 1 0  0 0 0 0
...o.....3...o.....3...o.....     | *  * * 12  *  * *  * * |  0  0  0  0  2  0  2  2  0  0  0  0  0  0  0  0  0  0 | 0 0  0 0 0  1  2  2  0  0 1  2  1  0  0  0  0 0  0  0 0 0  0 0 0 | 0 0 1 1  2 0 1  0 0 0 0
....o....3....o....3....o....     | *  * *  * 24  * *  * * |  0  0  0  0  0  1  0  1  1  1  1  1  0  0  0  0  0  0 | 0 0  0 0 0  0  0  1  1  1 0  1  1  1  1  1  1 0  0  0 0 0  0 0 0 | 0 0 1 0  1 1 1  1 0 0 0
.....o...3.....o...3.....o...     | *  * *  *  * 12 *  * * |  0  0  0  0  0  0  0  0  0  0  2  0  2  2  0  0  0  0 | 0 0  0 0 0  0  0  0  0  0 0  0  1  2  0  0  2 1  2  1 0 0  0 0 0 | 0 0 1 0  0 0 1  2 1 0 0
......o..3......o..3......o..     | *  * *  *  *  * 6  * * |  0  0  0  0  0  0  0  0  0  0  0  4  0  0  2  0  0  0 | 0 0  0 0 0  0  0  0  0  0 0  0  0  0  2  2  4 0  0  0 1 0  0 0 0 | 0 0 0 0  0 1 2  2 0 0 0
.......o.3.......o.3.......o.     | *  * *  *  *  * * 12 * |  0  0  0  0  0  0  0  0  0  0  0  0  0  2  1  2  1  0 | 0 0  0 0 0  0  0  0  0  0 0  0  0  0  0  0  2 0  1  2 1 1  2 0 0 | 0 0 0 0  0 0 2  1 1 1 0
........o3........o3........o     | *  * *  *  *  * *  * 6 |  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  2  4 | 0 0  0 0 0  0  0  0  0  0 0  0  0  0  0  0  0 0  0  0 1 0  4 2 2 | 0 0 0 0  0 0 2  0 0 2 1
----------------------------------+------------------------+-------------------------------------------------------+------------------------------------------------------------------+------------------------
......... x........ .........     | 2  0 0  0  0  0 0  0 0 | 12  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  * | 1 1  1 0 0  0  0  0  0  0 0  0  0  0  0  0  0 0  0  0 0 0  0 0 0 | 1 1 1 0  0 0 0  0 0 0 0
oo.......3oo.......3oo.......&#x  | 1  1 0  0  0  0 0  0 0 |  * 12  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  * | 0 0  2 1 0  0  0  0  0  0 0  0  0  0  0  0  0 0  0  0 0 0  0 0 0 | 0 1 2 0  0 0 0  0 0 0 0
......... .x....... .........     | 0  2 0  0  0  0 0  0 0 |  *  * 12  *  *  *  *  *  *  *  *  *  *  *  *  *  *  * | 0 0  1 0 1  1  0  0  0  0 0  0  0  0  0  0  0 0  0  0 0 0  0 0 0 | 0 1 1 1  0 0 0  0 0 0 0
.oo......3.oo......3.oo......&#x  | 0  1 1  0  0  0 0  0 0 |  *  *  * 12  *  *  *  *  *  *  *  *  *  *  *  *  *  * | 0 0  0 1 0  0  0  2  0  0 0  0  0  0  0  0  0 0  0  0 0 0  0 0 0 | 0 0 2 0  1 0 0  0 0 0 0
.o.o.....3.o.o.....3.o.o.....&#x  | 0  1 0  1  0  0 0  0 0 |  *  *  *  * 24  *  *  *  *  *  *  *  *  *  *  *  *  * | 0 0  0 0 0  1  1  1  0  0 0  0  0  0  0  0  0 0  0  0 0 0  0 0 0 | 0 0 1 1  1 0 0  0 0 0 0
..o.o....3..o.o....3..o.o....&#x  | 0  0 1  0  1  0 0  0 0 |  *  *  *  *  * 24  *  *  *  *  *  *  *  *  *  *  *  * | 0 0  0 0 0  0  0  1  1  1 0  0  0  0  0  0  0 0  0  0 0 0  0 0 0 | 0 0 1 0  1 1 0  0 0 0 0
......... ......... ...x.....     | 0  0 0  2  0  0 0  0 0 |  *  *  *  *  *  * 12  *  *  *  *  *  *  *  *  *  *  * | 0 0  0 0 0  0  1  0  0  0 1  1  0  0  0  0  0 0  0  0 0 0  0 0 0 | 0 0 0 1  1 0 1  0 0 0 0
...oo....3...oo....3...oo....&#x  | 0  0 0  1  1  0 0  0 0 |  *  *  *  *  *  *  * 24  *  *  *  *  *  *  *  *  *  * | 0 0  0 0 0  0  0  1  0  0 0  1  1  0  0  0  0 0  0  0 0 0  0 0 0 | 0 0 1 0  1 0 1  0 0 0 0
....x.... ......... .........     | 0  0 0  0  2  0 0  0 0 |  *  *  *  *  *  *  *  * 12  *  *  *  *  *  *  *  *  * | 0 0  0 0 0  0  0  0  1  0 0  0  0  1  1  0  0 0  0  0 0 0  0 0 0 | 0 0 1 0  0 1 0  1 0 0 0
......... ......... ....x....     | 0  0 0  0  2  0 0  0 0 |  *  *  *  *  *  *  *  *  * 12  *  *  *  *  *  *  *  * | 0 0  0 0 0  0  0  0  0  1 0  1  0  0  0  1  0 0  0  0 0 0  0 0 0 | 0 0 0 0  1 1 1  0 0 0 0
....oo...3....oo...3....oo...&#x  | 0  0 0  0  1  1 0  0 0 |  *  *  *  *  *  *  *  *  *  * 24  *  *  *  *  *  *  * | 0 0  0 0 0  0  0  0  0  0 0  0  1  1  0  0  1 0  0  0 0 0  0 0 0 | 0 0 1 0  0 0 1  1 0 0 0
....o.o..3....o.o..3....o.o..&#x  | 0  0 0  0  1  0 1  0 0 |  *  *  *  *  *  *  *  *  *  *  * 24  *  *  *  *  *  * | 0 0  0 0 0  0  0  0  0  0 0  0  0  0  1  1  1 0  0  0 0 0  0 0 0 | 0 0 0 0  0 1 1  1 0 0 0
.....x... ......... .........     | 0  0 0  0  0  2 0  0 0 |  *  *  *  *  *  *  *  *  *  *  *  * 12  *  *  *  *  * | 0 0  0 0 0  0  0  0  0  0 0  0  0  1  0  0  0 1  1  0 0 0  0 0 0 | 0 0 1 0  0 0 0  1 1 0 0
.....o.o.3.....o.o.3.....o.o.&#x  | 0  0 0  0  0  1 0  1 0 |  *  *  *  *  *  *  *  *  *  *  *  *  * 24  *  *  *  * | 0 0  0 0 0  0  0  0  0  0 0  0  0  0  0  0  1 0  1  1 0 0  0 0 0 | 0 0 0 0  0 0 1  1 1 0 0
......oo.3......oo.3......oo.&#x  | 0  0 0  0  0  0 1  1 0 |  *  *  *  *  *  *  *  *  *  *  *  *  *  * 12  *  *  * | 0 0  0 0 0  0  0  0  0  0 0  0  0  0  0  0  2 0  0  0 1 0  0 0 0 | 0 0 0 0  0 0 2  1 0 0 0
......... .......x. .........     | 0  0 0  0  0  0 0  2 0 |  *  *  *  *  *  *  *  *  *  *  *  *  *  *  * 12  *  * | 0 0  0 0 0  0  0  0  0  0 0  0  0  0  0  0  0 0  0  1 0 1  1 0 0 | 0 0 0 0  0 0 1  0 1 1 0
.......oo3.......oo3.......oo&#x  | 0  0 0  0  0  0 0  1 1 |  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  * 12  * | 0 0  0 0 0  0  0  0  0  0 0  0  0  0  0  0  0 0  0  0 1 0  2 0 0 | 0 0 0 0  0 0 2  0 0 1 0
......... ........x .........     | 0  0 0  0  0  0 0  0 2 |  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  * 12 | 0 0  0 0 0  0  0  0  0  0 0  0  0  0  0  0  0 0  0  0 0 0  1 1 1 | 0 0 0 0  0 0 1  0 0 1 1
----------------------------------+------------------------+-------------------------------------------------------+------------------------------------------------------------------+------------------------
o........3x........ .........     | 3  0 0  0  0  0 0  0 0 |  3  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 | 4 *  * * *  *  *  *  *  * *  *  *  *  *  *  * *  *  * * *  * * * | 1 0 1 0  0 0 0  0 0 0 0
......... x........3o........     | 3  0 0  0  0  0 0  0 0 |  3  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 | * 4  * * *  *  *  *  *  * *  *  *  *  *  *  * *  *  * * *  * * * | 1 1 0 0  0 0 0  0 0 0 0
......... xx....... .........&#x  | 2  2 0  0  0  0 0  0 0 |  1  2  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 | * * 12 * *  *  *  *  *  * *  *  *  *  *  *  * *  *  * * *  * * * | 0 1 1 0  0 0 0  0 0 0 0
oqo...... ......... .........&#xt | 1  2 1  0  0  0 0  0 0 |  0  2  0  2  0  0  0  0  0  0  0  0  0  0  0  0  0  0 | * *  * 6 *  *  *  *  *  * *  *  *  *  *  *  * *  *  * * *  * * * | 0 0 2 0  0 0 0  0 0 0 0
......... .x.......3.o.......     | 0  3 0  0  0  0 0  0 0 |  0  0  3  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 | * *  * * 4  *  *  *  *  * *  *  *  *  *  *  * *  *  * * *  * * * | 0 1 0 1  0 0 0  0 0 0 0
......... .x.o..... .........&#x  | 0  2 0  1  0  0 0  0 0 |  0  0  1  0  2  0  0  0  0  0  0  0  0  0  0  0  0  0 | * *  * * * 12  *  *  *  * *  *  *  *  *  *  * *  *  * * *  * * * | 0 0 1 1  0 0 0  0 0 0 0
......... ......... .o.x.....&#x  | 0  1 0  2  0  0 0  0 0 |  0  0  0  0  2  0  1  0  0  0  0  0  0  0  0  0  0  0 | * *  * * *  * 12  *  *  * *  *  *  *  *  *  * *  *  * * *  * * * | 0 0 0 1  1 0 0  0 0 0 0
.oooo....3.oooo....3.oooo....&#xr | 0  1 1  1  1  0 0  0 0 |  0  0  0  1  1  1  0  1  0  0  0  0  0  0  0  0  0  0 | * *  * * *  *  * 24  *  * *  *  *  *  *  *  * *  *  * * *  * * * | 0 0 1 0  1 0 0  0 0 0 0
..o.x.... ......... .........&#x  | 0  0 1  0  2  0 0  0 0 |  0  0  0  0  0  2  0  0  1  0  0  0  0  0  0  0  0  0 | * *  * * *  *  *  * 12  * *  *  *  *  *  *  * *  *  * * *  * * * | 0 0 1 0  0 1 0  0 0 0 0
......... ......... ..o.x....&#x  | 0  0 1  0  2  0 0  0 0 |  0  0  0  0  0  2  0  0  0  1  0  0  0  0  0  0  0  0 | * *  * * *  *  *  *  * 12 *  *  *  *  *  *  * *  *  * * *  * * * | 0 0 0 0  1 1 0  0 0 0 0
......... ...o.....3...x.....     | 0  0 0  3  0  0 0  0 0 |  0  0  0  0  0  0  3  0  0  0  0  0  0  0  0  0  0  0 | * *  * * *  *  *  *  *  * 4  *  *  *  *  *  * *  *  * * *  * * * | 0 0 0 1  0 0 1  0 0 0 0
......... ......... ...xx....&#x  | 0  0 0  2  2  0 0  0 0 |  0  0  0  0  0  0  1  2  0  1  0  0  0  0  0  0  0  0 | * *  * * *  *  *  *  *  * * 12  *  *  *  *  * *  *  * * *  * * * | 0 0 0 0  1 0 1  0 0 0 0
......... ...oqo... .........&#xt | 0  0 0  1  2  1 0  0 0 |  0  0  0  0  0  0  0  2  0  0  2  0  0  0  0  0  0  0 | * *  * * *  *  *  *  *  * *  * 12  *  *  *  * *  *  * * *  * * * | 0 0 1 0  0 0 1  0 0 0 0
....xx... ......... .........&#x  | 0  0 0  0  2  2 0  0 0 |  0  0  0  0  0  0  0  0  1  0  2  0  1  0  0  0  0  0 | * *  * * *  *  *  *  *  * *  *  * 12  *  *  * *  *  * * *  * * * | 0 0 1 0  0 0 0  1 0 0 0
....x.o.. ......... .........&#x  | 0  0 0  0  2  0 1  0 0 |  0  0  0  0  0  0  0  0  1  0  0  2  0  0  0  0  0  0 | * *  * * *  *  *  *  *  * *  *  *  * 12  *  * *  *  * * *  * * * | 0 0 0 0  0 1 0  1 0 0 0
......... ......... ....x.o..&#x  | 0  0 0  0  2  0 1  0 0 |  0  0  0  0  0  0  0  0  0  1  0  2  0  0  0  0  0  0 | * *  * * *  *  *  *  *  * *  *  *  *  * 12  * *  *  * * *  * * * | 0 0 0 0  0 1 1  0 0 0 0
....oooo.3....oooo.3....oooo.&#xr | 0  0 0  0  1  1 1  1 0 |  0  0  0  0  0  0  0  0  0  0  1  1  0  1  1  0  0  0 | * *  * * *  *  *  *  *  * *  *  *  *  *  * 24 *  *  * * *  * * * | 0 0 0 0  0 0 1  1 0 0 0
.....x...3....o.... .........     | 0  0 0  0  0  3 0  0 0 |  0  0  0  0  0  0  0  0  0  0  0  0  3  0  0  0  0  0 | * *  * * *  *  *  *  *  * *  *  *  *  *  *  * 4  *  * * *  * * * | 0 0 1 0  0 0 0  0 1 0 0
.....x.o. ......... .........&#x  | 0  0 0  0  0  2 0  1 0 |  0  0  0  0  0  0  0  0  0  0  0  0  1  2  0  0  0  0 | * *  * * *  *  *  *  *  * *  *  *  *  *  *  * * 12  * * *  * * * | 0 0 0 0  0 0 0  1 1 0 0
......... .....o.x. .........&#x  | 0  0 0  0  0  1 0  2 0 |  0  0  0  0  0  0  0  0  0  0  0  0  0  2  0  1  0  0 | * *  * * *  *  *  *  *  * *  *  *  *  *  *  * *  * 12 * *  * * * | 0 0 0 0  0 0 1  0 1 0 0
......... ......... ......oqo&#xt | 0  0 0  0  0  0 1  2 1 |  0  0  0  0  0  0  0  0  0  0  0  0  0  0  2  0  2  0 | * *  * * *  *  *  *  *  * *  *  *  *  *  *  * *  *  * 6 *  * * * | 0 0 0 0  0 0 2  0 0 0 0
.......o.3.......x. .........     | 0  0 0  0  0  0 0  3 0 |  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  3  0  0 | * *  * * *  *  *  *  *  * *  *  *  *  *  *  * *  *  * * 4  * * * | 0 0 0 0  0 0 0  0 1 1 0
......... .......xx .........&#x  | 0  0 0  0  0  0 0  2 2 |  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  2  1 | * *  * * *  *  *  *  *  * *  *  *  *  *  *  * *  *  * * * 12 * * | 0 0 0 0  0 0 1  0 0 1 0
........o3........x .........     | 0  0 0  0  0  0 0  0 3 |  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  3 | * *  * * *  *  *  *  *  * *  *  *  *  *  *  * *  *  * * *  * 4 * | 0 0 0 0  0 0 0  0 0 1 1
......... ........x3........o     | 0  0 0  0  0  0 0  0 3 |  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  3 | * *  * * *  *  *  *  *  * *  *  *  *  *  *  * *  *  * * *  * * 4 | 0 0 0 0  0 0 1  0 0 0 1
----------------------------------+------------------------+-------------------------------------------------------+------------------------------------------------------------------+------------------------
o........3x........3o........      6  0 0  0  0  0 0  0 0 | 12  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 | 4 4  0 0 0  0  0  0  0  0 0  0  0  0  0  0  0 0  0  0 0 0  0 0 0 | 1 * * *  * * *  * * * *
......... xx.......3oo.......&#x   3  3 0  0  0  0 0  0 0 |  3  3  3  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 | 0 1  3 0 1  0  0  0  0  0 0  0  0  0  0  0  0 0  0  0 0 0  0 0 0 | * 4 * *  * * *  * * * *
oqowxx...3xxwoqo... .........&#xt  3  6 3  3  6  3 0  0 0 |  3  6  3  6  6  6  0  6  3  0  6  0  3  0  0  0  0  0 | 1 0  3 3 0  3  0  6  3  0 0  0  3  3  0  0  0 1  0  0 0 0  0 0 0 | * * 4 *  * * *  * * * *
......... .x.o.....3.o.x.....&#x   0  3 0  3  0  0 0  0 0 |  0  0  3  0  6  0  3  0  0  0  0  0  0  0  0  0  0  0 | 0 0  0 0 1  3  3  0  0  0 1  0  0  0  0  0  0 0  0  0 0 0  0 0 0 | * * * 4  * * *  * * * *
......... ......... .ooxx....&#xr  0  1 1  2  2  0 0  0 0 |  0  0  0  1  2  2  1  2  0  1  0  0  0  0  0  0  0  0 | 0 0  0 0 0  0  1  2  0  1 0  1  0  0  0  0  0 0  0  0 0 0  0 0 0 | * * * * 12 * *  * * * *
..o.x.o.. ......... ..o.x.o..&#xt  0  0 1  0  4  0 1  0 0 |  0  0  0  0  0  4  0  0  2  2  0  4  0  0  0  0  0  0 | 0 0  0 0 0  0  0  0  2  2 0  0  0  0  2  2  0 0  0  0 0 0  0 0 0 | * * * *  * 6 *  * * * *
......... ...oqowxx3...xxwoqo&#xt  0  0 0  3  6  3 3  6 3 |  0  0  0  0  0  0  3  6  0  3  6  6  0  6  6  3  6  3 | 0 0  0 0 0  0  0  0  0  0 1  3  3  0  0  3  6 0  0  3 3 0  3 0 1 | * * * *  * * 4  * * * *
....xxoo. ......... .........&#xr  0  0 0  0  2  2 1  1 0 |  0  0  0  0  0  0  0  0  1  0  2  2  1  2  1  0  0  0 | 0 0  0 0 0  0  0  0  0  0 0  0  0  1  1  0  2 0  1  0 0 0  0 0 0 | * * * *  * * * 12 * * *
.....x.o.3.....o.x. .........&#x   0  0 0  0  0  3 0  3 0 |  0  0  0  0  0  0  0  0  0  0  0  0  3  6  0  3  0  0 | 0 0  0 0 0  0  0  0  0  0 0  0  0  0  0  0  0 1  3  3 0 1  0 0 0 | * * * *  * * *  * 4 * *
.......oo3.......xx .........&#x   0  0 0  0  0  0 0  3 3 |  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  3  3  3 | 0 0  0 0 0  0  0  0  0  0 0  0  0  0  0  0  0 0  0  0 0 1  3 1 0 | * * * *  * * *  * * 4 *
........o3........x3........o      0  0 0  0  0  0 0  0 6 |  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 12 | 0 0  0 0 0  0  0  0  0  0 0  0  0  0  0  0  0 0  0  0 0 0  0 4 4 | * * * *  * * *  * * * 1

qo3xx3oq *b3oo&#zx   → height = 0
(tegum sum of 2 mutually gyrated (q,x)-thexes)

o.3o.3o. *b3o.     | 48  * |  4  2  0 |  2  2  1  4  0  0 | 1 2  2 0
.o3.o3.o *b3.o     |  * 48 |  0  2  4 |  0  0  1  4  2  2 | 0 2  2 1
-------------------+-------+----------+-------------------+---------
.. x. ..    ..     |  2  0 | 96  *  * |  1  1  0  1  0  0 | 1 1  1 0
oo3oo3oo *b3oo&#x  |  1  1 |  * 96  * |  0  0  1  2  0  0 | 0 2  1 0
.. .x ..    ..     |  0  2 |  *  * 96 |  0  0  0  1  1  1 | 0 1  1 1
-------------------+-------+----------+-------------------+---------
.. x.3o.    ..     |  3  0 |  3  0  0 | 32  *  *  *  *  * | 1 1  0 0
.. x. .. *b3o.     |  3  0 |  3  0  0 |  * 32  *  *  *  * | 1 0  1 0
qo .. oq    ..&#zx |  2  2 |  0  4  0 |  *  * 24  *  *  * | 0 2  0 0
.. xx ..    ..&#x  |  2  2 |  1  2  1 |  *  *  * 96  *  * | 0 1  1 0
.o3.x ..    ..     |  0  3 |  0  0  3 |  *  *  *  * 32  * | 0 1  0 1
.. .x .. *b3.o     |  0  3 |  0  0  3 |  *  *  *  *  * 32 | 0 0  1 1
-------------------+-------+----------+-------------------+---------
.. x.3o. *b3.o       6  0 | 12  0  0 |  4  4  0  0  0  0 | 8 *  * *
qo3xx3oq    ..&#zx  12 12 | 12 24 12 |  4  0  6 12  4  0 | * 8  * *
.. xx .. *b3oo&#x    3  3 |  3  3  3 |  0  1  0  3  0  1 | * * 32 *
.o3.x .. *b3.o       0  6 |  0  0 12 |  0  0  0  0  4  4 | * *  * 8

wx xo3ox4xx&#zx   → height = 0
(tegum sum of (w,x,x)-sircope and ticcup)

o. o.3o.4o.     | 48  * |  2  2  2  0  0  0 |  1  2  1  2  1  2  0  0  0 | 1 1  1  2 0
.o .o3.o4.o     |  * 48 |  0  0  2  1  2  1 |  0  0  0  1  2  2  2  1  1 | 0 2  1  1 1
----------------+-------+-------------------+----------------------------+------------
.. x. .. ..     |  2  0 | 48  *  *  *  *  * |  1  1  0  1  0  0  0  0  0 | 1 0  1  1 0
.. .. .. x.     |  2  0 |  * 48  *  *  *  * |  0  1  1  0  0  1  0  0  0 | 1 1  0  1 0
oo oo3oo4oo&#x  |  1  1 |  *  * 96  *  *  * |  0  0  0  1  1  1  0  0  0 | 0 1  1  1 0
.x .. .. ..     |  0  2 |  *  *  * 24  *  * |  0  0  0  0  0  0  2  1  0 | 0 2  0  0 1
.. .. .x ..     |  0  2 |  *  *  *  * 48  * |  0  0  0  0  1  0  1  0  1 | 0 1  1  0 1
.. .. .. .x     |  0  2 |  *  *  *  *  * 24 |  0  0  0  0  0  2  0  1  0 | 0 2  0  1 0
----------------+-------+-------------------+----------------------------+------------
.. x.3o. ..     |  3  0 |  3  0  0  0  0  0 | 16  *  *  *  *  *  *  *  * | 1 0  1  0 0
.. x. .. x.     |  4  0 |  2  2  0  0  0  0 |  * 24  *  *  *  *  *  *  * | 1 0  0  1 0
.. .. o.4x.     |  4  0 |  0  4  0  0  0  0 |  *  * 12  *  *  *  *  *  * | 1 1  0  0 0
.. xo .. ..&#x  |  2  1 |  1  0  2  0  0  0 |  *  *  * 48  *  *  *  *  * | 0 0  1  1 0
.. .. ox ..&#x  |  1  2 |  0  0  2  0  1  0 |  *  *  *  * 48  *  *  *  * | 0 1  1  0 0
.. .. .. xx&#x  |  2  2 |  0  1  2  0  0  1 |  *  *  *  *  * 48  *  *  * | 0 1  0  1 0
.x .. .x ..     |  0  4 |  0  0  0  2  2  0 |  *  *  *  *  *  * 24  *  * | 0 1  0  0 1
.x .. .. .x     |  0  4 |  0  0  0  2  0  2 |  *  *  *  *  *  *  * 12  * | 0 2  0  0 0
.. .o3.x ..     |  0  3 |  0  0  0  0  3  0 |  *  *  *  *  *  *  *  * 16 | 0 0  1  0 1
----------------+-------+-------------------+----------------------------+------------
.. x.3o.4x.      24  0 | 24 24  0  0  0  0 |  8 12  6  0  0  0  0  0  0 | 2 *  *  * *
wx .. ox4xx&#zx   8 16 |  0  8 16  8  8  8 |  0  0  2  0  8  8  4  4  0 | * 6  *  * *
.. xo3ox ..&#x    3  3 |  3  0  6  0  3  0 |  1  0  0  3  3  0  0  0  1 | * * 16  * *
.. xo .. xx&#x    4  2 |  2  2  4  0  0  1 |  0  1  0  2  0  2  0  0  0 | * *  * 24 *
.x .o3.x ..       0  6 |  0  0  0  3  6  0 |  0  0  0  0  0  0  3  0  2 | * *  *  * 8

oxo4xxw oxo4wxx&#zxt   → height = 0
(tegum sum of 2 (x,w)-tes and odip)

o..4o.. o..4o..     & | 32  * |  2   4  0  0 | 1  2  2  4  0  0 |  1 2  2
.o.4.o. .o.4.o.       |  * 64 |  0   2  2  2 | 0  2  2  2  2  1 |  1 2  2
----------------------+-------+--------------+------------------+--------
... x.. ... ...       |  2  0 | 32   *  *  * | 1  0  0  2  0  0 |  0 2  1
oo.4oo. oo.4oo.&#x  & |  1  1 |  * 128  *  * | 0  1  1  1  0  0 |  1 1  1
.x. ... ... ...     & |  0  2 |  *   * 64  * | 0  1  1  0  1  0 |  1 1  1
... .x. ... ...     & |  0  2 |  *   *  * 64 | 0  0  0  1  1  1 |  0 2  1
----------------------+-------+--------------+------------------+--------
o..4x.. ... ...     & |  4  0 |  4   0  0  0 | 8  *  *  *  *  * |  0 2  0
ox. ... ... ...&#x  & |  1  2 |  0   2  1  0 | * 64  *  *  *  * |  1 1  0
... ... ox. ...&#x  & |  1  2 |  0   2  1  0 | *  * 64  *  *  * |  1 0  1
... xx. ... ...&#x  & |  2  2 |  1   2  0  1 | *  *  * 64  *  * |  0 1  1
.x. ... ... .x.     & |  0  4 |  0   0  2  2 | *  *  *  * 32  * |  0 1  1
... .x. ... .x.       |  0  4 |  0   0  0  4 | *  *  *  *  * 16 |  0 2  0
----------------------+-------+--------------+------------------+--------
oxo ... oxo ...&#xt     2  4 |  0   8  4  0 | 0  4  4  0  0  0 | 16 *  *
ox.4xx. ... wx.&#zx &   8 16 |  8  16  8 16 | 2  8  0  8  4  4 |  * 8  *
... xx. ox. ...&#x  &   2  4 |  1   4  2  2 | 0  0  2  2  1  0 |  * * 32

© 2004-2018
top of page