Acronym pexco Name partially (mono-)expanded cuboctahedron,4fold elongated cuboctahedron Circumradius ... Vertex figure [3,4,3,h], [3,H,H] Dihedral angles (at margins) between {3} and {4}:   arccos(-1/sqrt(3)) = 125.264390° between {3} and {(h,H,H)2}:   arccos(-1/sqrt(3)) = 125.264390° between {(h,H,H)2} and {(h,H,H)2}:   90° Confer uniform relative: co   augmentations: ebauco   general polytopal classes: partial Stott expansions

The non-regular hexagons {(h,H,H)2} are diagonally elongated squares. Its vertex angles are h = 90° resp. H = 135°.

Incidence matrix according to Dynkin symbol

wx oq4xo&#zx   → height = 0
(tegum sum of (w,x,x)-cube and gyro (x,q,q)-cube)

o. o.4o.     | 8 * | 2  2 0 | 1 1 2  [3,4,3,h]
.o .o4.o     | * 8 | 0  2 1 | 0 2 1  [3,H,H]
-------------+-----+--------+------
.. .. x.     | 2 0 | 8  * * | 1 0 1
oo oo4oo&#x  | 1 1 | * 16 * | 0 1 1
.x .. ..     | 0 2 | *  * 4 | 0 2 0
-------------+-----+--------+------
.. o.4x.     | 4 0 | 4  0 0 | 2 * *
wx oq ..&#zx | 2 4 | 0  4 2 | * 4 *  {(h,H,H)2}
.. .. xo&#x  | 2 1 | 1  2 0 | * * 8

wxw qqo oqq&#zx   → height = 0

o.. o.. o..     & | 8 * |  2 2 0 | 2 1 1  [3,4,3,h]
.o. .o. .o.       | * 8 |  2 0 1 | 1 2 0  [3,H,H]
------------------+-----+--------+------
oo. oo. oo.&#x  & | 1 1 | 16 * * | 1 1 0
o.o o.o o.o&#x  & | 2 0 |  * 8 * | 1 0 1
.x. ... ...       | 0 2 |  * * 4 | 0 2 0
------------------+-----+--------+------
ooo ooo ooo&#x  & | 2 1 |  2 1 0 | 8 * *
wx. ... oq.&#zx & | 2 4 |  4 0 2 | * 4 *  {(h,H,H)2}
... q.o o.q&#zx & | 4 0 |  0 4 0 | * * 2  {4}

oqqo4xoox&#xt   → outer heights = 1/sqrt(2) = 0.707107
inner height = 1
({4} || pseudo dual q-{4} || pseudo dual q-{4} || {4})

o...4o...     | 4 * * * | 2 2 0 0 0 | 1 2 1 0 0  [3,4,3,h]
.o..4.o..     | * 4 * * | 0 2 1 0 0 | 0 1 2 0 0  [3,H,H]
..o.4..o.     | * * 4 * | 0 0 1 2 0 | 0 0 2 1 0  [3,H,H]
...o4...o     | * * * 4 | 0 0 0 2 2 | 0 0 1 2 1  [3,4,3,h]
--------------+---------+-----------+----------
.... x...     | 2 0 0 0 | 4 * * * * | 1 1 0 0 0
oo..4oo..&#x  | 1 1 0 0 | * 8 * * * | 0 1 1 0 0
.oo.4.oo.&#x  | 0 1 1 0 | * * 4 * * | 0 0 2 0 0
..oo4..oo&#x  | 0 0 1 1 | * * * 8 * | 0 0 1 1 0
.... ...x     | 0 0 0 2 | * * * * 4 | 0 0 0 1 1
--------------+---------+-----------+----------
o...4x...     | 4 0 0 0 | 4 0 0 0 0 | 1 * * * *
.... xo..&#x  | 2 1 0 0 | 1 2 0 0 0 | * 4 * * *
oqqo ....&#xt | 1 2 2 1 | 0 2 2 2 0 | * * 4 * *  {(h,H,H)2}
.... ..ox&#x  | 0 0 1 2 | 0 0 0 2 1 | * * * 4 *
...o4...x     | 0 0 0 4 | 0 0 0 0 4 | * * * * 1