Acronym pexco
Name partially (mono-)expanded cuboctahedron,
4fold elongated cuboctahedron
VRML
 
Circumradius ...
Vertex figure [3,4,3,h], [3,H,H]
Dihedral angles
(at margins)
  • between {3} and {4}:   arccos[-1/sqrt(3)] = 125.264390°
  • between {3} and {(h,H,H)2}:   arccos[-1/sqrt(3)] = 125.264390°
  • between {(h,H,H)2} and {(h,H,H)2}:   90°
Face vector 16, 28, 14
Confer
uniform relative:
co  
variations:
((xu ox4qo))&#zc  
augmentations:
ebauco  
general polytopal classes:
partial Stott expansions  

The non-regular hexagons {(h,H,H)2} are diagonally elongated squares. Its vertex angles are h = 90° resp. H = 135°.


Incidence matrix according to Dynkin symbol

((wx oq4xo))&#zx   → height = 0
(tegum sum of (w,x,x)-cube and gyro (x,q,q)-cube)

  o. o.4o.       | 8 * | 2  2 0 | 1 1 2  [3,4,3,h]
  .o .o4.o       | * 8 | 0  2 1 | 0 2 1  [3,H,H]
-----------------+-----+--------+------
  .. .. x.       | 2 0 | 8  * * | 1 0 1
  oo oo4oo  &#x  | 1 1 | * 16 * | 0 1 1
  .x .. ..       | 0 2 | *  * 4 | 0 2 0
-----------------+-----+--------+------
  .. o.4x.       | 4 0 | 4  0 0 | 2 * *
((wx oq ..))&#zx | 2 4 | 0  4 2 | * 4 *  {(h,H,H)2}
  .. .. xo  &#x  | 2 1 | 1  2 0 | * * 8

((wxw qqo oqq))&#zx   → height = 0

  o.. o.. o..       & | 8 * |  2 2 0 | 2 1 1  [3,4,3,h]
  .o. .o. .o.         | * 8 |  2 0 1 | 1 2 0  [3,H,H]
----------------------+-----+--------+------
  oo. oo. oo.  &#x  & | 1 1 | 16 * * | 1 1 0
  o.o o.o o.o  &#x  & | 2 0 |  * 8 * | 1 0 1
  .x. ... ...         | 0 2 |  * * 4 | 0 2 0
----------------------+-----+--------+------
  ooo ooo ooo  &#x  & | 2 1 |  2 1 0 | 8 * *
((wx. ... oq.))&#zx & | 2 4 |  4 0 2 | * 4 *  {(h,H,H)2}
((... q.o o.q))&#zx & | 4 0 |  0 4 0 | * * 2  {4}

oqqo4xoox&#xt   → outer heights = 1/sqrt(2) = 0.707107
                  inner height = 1
({4} || pseudo dual q-{4} || pseudo dual q-{4} || {4})

o...4o...     | 4 * * * | 2 2 0 0 0 | 1 2 1 0 0  [3,4,3,h]
.o..4.o..     | * 4 * * | 0 2 1 0 0 | 0 1 2 0 0  [3,H,H]
..o.4..o.     | * * 4 * | 0 0 1 2 0 | 0 0 2 1 0  [3,H,H]
...o4...o     | * * * 4 | 0 0 0 2 2 | 0 0 1 2 1  [3,4,3,h]
--------------+---------+-----------+----------
.... x...     | 2 0 0 0 | 4 * * * * | 1 1 0 0 0
oo..4oo..&#x  | 1 1 0 0 | * 8 * * * | 0 1 1 0 0
.oo.4.oo.&#x  | 0 1 1 0 | * * 4 * * | 0 0 2 0 0
..oo4..oo&#x  | 0 0 1 1 | * * * 8 * | 0 0 1 1 0
.... ...x     | 0 0 0 2 | * * * * 4 | 0 0 0 1 1
--------------+---------+-----------+----------
o...4x...     | 4 0 0 0 | 4 0 0 0 0 | 1 * * * *
.... xo..&#x  | 2 1 0 0 | 1 2 0 0 0 | * 4 * * *
oqqo ....&#xt | 1 2 2 1 | 0 2 2 2 0 | * * 4 * *  {(h,H,H)2}
.... ..ox&#x  | 0 0 1 2 | 0 0 0 2 1 | * * * 4 *
...o4...x     | 0 0 0 4 | 0 0 0 0 4 | * * * * 1

© 2004-2026
top of page