Acronym quawros Name quadratic ({8} || cube-)wedge rosette,bridge cyclotetraaugmented tesseract,ring-augmented tesseract,cube || {8} || cube,{4} || squobcu || {4} ` ©` Lace cityin approx. ASCII-art ``` x4o x4o x4x x4o x4o ``` ``` o4o o4o o4o o4x o4x o4o o4o o4x o4x o4o o4o o4o ``` Dihedral angles at {3} between tet and trip:   150° at {4} between cube and trip:   arccos(-sqrt[2/3]) = 144.735610° at {3} between tet and tet:   120° at {4} between trip and trip:   arccos(-1/3) = 109.471221° at {4} between cube and cube:   90° Pattern ```A-------A-------A-------A------(A) |\ /|\ /|\ /|\ / --B---B---B---B---B---B---B---B-- |/ \|/ \|/ \|/ \ A-------A-------A-------A------(A) |\ /|\ /|\ /|\ / --B---B---B---B---B---B---B---B-- |/ \|/ \|/ \|/ \ A-------A-------A-------A------(A) |\ /|\ /|\ /|\ / --B---B---B---B---B---B---B---B-- |/ \|/ \|/ \|/ \ A-------A-------A-------A------(A) |\ /|\ /|\ /|\ / --B---B---B---B---B---B---B---B-- |/ \|/ \|/ \|/ \ (A) (A) (A) (A) (A) vertical -B-B- lines to be identified ``` Confer related segmentochora: squicuf   squacufbil   sircope   augmentation base: tes   uniform relative: hex   sidpith   related CRFs: pex hex   pacsid pith   stawros   general polytopal classes: partial Stott expansions   bistratic lace towers

This non-orbiform CRF could be constructed by augmenting one cycle of 4 cubes of a tes (seen as 4,4-duoprism, represented as vertices A in the pattern) by squippyps (as line||cube wedges). Further the gaps between these augmentations get bridged by further filled in squascs. – Thereby the squares intersecting this cycle of cubes (projected onto the vertical A-A-connections in the pattern above) finally will be withdrawn likewise.

Alternatively this polychoron could be constructed by attaching 4 {8} || cube segmentochora around the octagon (represented by the B vertices in the pattern above), pairwise blending out the squacues.

Finally, from sidpith, known to be tristratic (when considered cube-first), the central stratos (sircope) could be withdrawn (directly adjoining the outer parts). Then, using this bicupola in an orthogonal direction, i.e. with a (now withdrawn) former cube first, that one is still tristratic. Here again the central stratos could be withdrawn. Thus quawros is obtained again (cf. esp. the lace city display of sidpith).

Conversely it can be obtained by 2 orthogonally applied axial partial Stott expansions based on hex.

Incidence matrix according to Dynkin symbol

```xxx4oxo xox&#xt   → both heights = 1/2
(cube || pseudo {8} || cube)

o..4o.. o..    | 8 * * | 2 1  2 1 0 0  0 0 0 | 1 2 2 1 2 2  2 0 0 0 0 0 | 1 2 1 1 2 1 0 0 0  (A)
.o.4.o. .o.    | * 8 * | 0 0  2 0 1 1  2 0 0 | 0 0 2 2 1 0  2 2 2 1 0 0 | 0 1 1 0 2 2 1 1 0  (B)
..o4..o ..o    | * * 8 | 0 0  0 1 0 0  2 2 1 | 0 0 0 0 0 2  2 2 1 2 1 2 | 0 0 0 1 2 1 2 1 1  (A)
---------------+-------+---------------------+--------------------------+------------------
x.. ... ...    | 2 0 0 | 8 *  * * * *  * * * | 1 1 1 0 0 1  0 0 0 0 0 0 | 1 1 0 1 1 0 0 0 0
... ... x..    | 2 0 0 | * 4  * * * *  * * * | 0 2 0 0 2 0  0 0 0 0 0 0 | 1 2 1 0 0 0 0 0 0
oo.4oo. oo.&#x | 1 1 0 | * * 16 * * *  * * * | 0 0 1 1 1 0  1 0 0 0 0 0 | 0 1 1 0 1 1 0 0 0
o.o4o.o o.o&#x | 1 0 1 | * *  * 8 * *  * * * | 0 0 0 0 0 2  2 0 0 0 0 0 | 0 0 0 1 2 1 0 0 0
.x. ... ...    | 0 2 0 | * *  * * 4 *  * * * | 0 0 2 0 0 0  0 2 0 0 0 0 | 0 1 0 0 2 0 1 0 0
... .x. ...    | 0 2 0 | * *  * * * 4  * * * | 0 0 0 2 0 0  0 0 2 0 0 0 | 0 0 1 0 0 2 0 1 0
.oo4.oo .oo&#x | 0 1 1 | * *  * * * * 16 * * | 0 0 0 0 0 0  1 1 1 1 0 0 | 0 0 0 0 1 1 1 1 0
..x ... ...    | 0 0 2 | * *  * * * *  * 8 * | 0 0 0 0 0 1  0 1 0 0 1 1 | 0 0 0 1 1 0 1 0 1
... ... ..x    | 0 0 2 | * *  * * * *  * * 4 | 0 0 0 0 0 0  0 0 0 2 0 2 | 0 0 0 0 0 0 2 1 1
---------------+-------+---------------------+--------------------------+------------------
x..4o.. ...    | 4 0 0 | 4 0  0 0 0 0  0 0 0 | 2 * * * * *  * * * * * * | 1 0 0 1 0 0 0 0 0
x.. ... x..    | 4 0 0 | 2 2  0 0 0 0  0 0 0 | * 4 * * * *  * * * * * * | 1 1 0 0 0 0 0 0 0
xx. ... ...&#x | 2 2 0 | 1 0  2 0 1 0  0 0 0 | * * 8 * * *  * * * * * * | 0 1 0 0 1 0 0 0 0
... ox. ...&#x | 1 2 0 | 0 0  2 0 0 1  0 0 0 | * * * 8 * *  * * * * * * | 0 0 1 0 0 1 0 0 0
... ... xo.&#x | 2 1 0 | 0 1  2 0 0 0  0 0 0 | * * * * 8 *  * * * * * * | 0 1 1 0 0 0 0 0 0
x.x ... ...&#x | 2 0 2 | 1 0  0 2 0 0  0 1 0 | * * * * * 8  * * * * * * | 0 0 0 1 1 0 0 0 0
ooo4ooo ooo&#x | 1 1 1 | 0 0  1 1 0 0  1 0 0 | * * * * * * 16 * * * * * | 0 0 0 0 1 1 0 0 0
.xx ... ...&#x | 0 2 2 | 0 0  0 0 1 0  2 1 0 | * * * * * *  * 8 * * * * | 0 0 0 0 1 0 1 0 0
... .xo ...&#x | 0 2 1 | 0 0  0 0 0 1  2 0 0 | * * * * * *  * * 8 * * * | 0 0 0 0 0 1 0 1 0
... ... .ox&#x | 0 1 2 | 0 0  0 0 0 0  2 0 1 | * * * * * *  * * * 8 * * | 0 0 0 0 0 0 1 1 0
..x4..o ...    | 0 0 4 | 0 0  0 0 0 0  0 4 0 | * * * * * *  * * * * 2 * | 0 0 0 1 0 0 0 0 1
..x ... ..x    | 0 0 4 | 0 0  0 0 0 0  0 2 2 | * * * * * *  * * * * * 4 | 0 0 0 0 0 0 1 0 1
---------------+-------+---------------------+--------------------------+------------------
x..4o.. x..    ♦ 8 0 0 | 8 4  0 0 0 0  0 0 0 | 2 4 0 0 0 0  0 0 0 0 0 0 | 1 * * * * * * * *
xx. ... xo.&#x ♦ 4 2 0 | 2 2  4 0 1 0  0 0 0 | 0 1 2 0 2 0  0 0 0 0 0 0 | * 4 * * * * * * *
... ox. xo.&#x ♦ 2 2 0 | 0 1  4 0 0 1  0 0 0 | 0 0 0 2 2 0  0 0 0 0 0 0 | * * 4 * * * * * *
x.x4o.o ...&#x ♦ 4 0 4 | 4 0  0 4 0 0  0 4 0 | 1 0 0 0 0 4  0 0 0 0 1 0 | * * * 2 * * * * *
xxx ... ...&#x ♦ 2 2 2 | 1 0  2 2 1 0  2 1 0 | 0 0 1 0 0 1  2 1 0 0 0 0 | * * * * 8 * * * *
... oxo ...&#x ♦ 1 2 1 | 0 0  2 1 0 1  2 0 0 | 0 0 0 1 0 0  2 0 1 0 0 0 | * * * * * 8 * * *
.xx ... .ox&#x ♦ 0 2 4 | 0 0  0 0 1 0  4 2 2 | 0 0 0 0 0 0  0 2 0 2 0 1 | * * * * * * 4 * *
... .xo .ox&#x ♦ 0 2 2 | 0 0  0 0 0 1  4 0 1 | 0 0 0 0 0 0  0 0 2 2 0 0 | * * * * * * * 4 *
..x4..o ..x    ♦ 0 0 8 | 0 0  0 0 0 0  0 8 4 | 0 0 0 0 0 0  0 0 0 0 2 4 | * * * * * * * * 1
```
```or
o..4o.. o..     & | 16 * |  2 1  2 1 0 0 | 1 2  2  1  2 2  2 | 1 2 1 1 2 1  (A)
.o.4.o. .o.       |  * 8 |  0 0  4 0 1 1 | 0 0  4  4  2 0  2 | 0 2 2 0 2 2  (B)
------------------+------+---------------+-------------------+------------
x.. ... ...     & |  2 0 | 16 *  * * * * | 1 1  1  0  0 1  0 | 1 1 0 1 1 0
... ... x..     & |  2 0 |  * 8  * * * * | 0 2  0  0  2 0  0 | 1 2 1 0 0 0
oo.4oo. oo.&#x  & |  1 1 |  * * 32 * * * | 0 0  1  1  1 0  1 | 0 1 1 0 1 1
o.o4o.o o.o&#x    |  2 0 |  * *  * 8 * * | 0 0  0  0  0 2  2 | 0 0 0 1 2 1
.x. ... ...       |  0 2 |  * *  * * 4 * | 0 0  4  0  0 0  0 | 0 2 0 0 2 0
... .x. ...       |  0 2 |  * *  * * * 4 | 0 0  0  4  0 0  0 | 0 0 2 0 0 2
------------------+------+---------------+-------------------+------------
x..4o.. ...     & |  4 0 |  4 0  0 0 0 0 | 4 *  *  *  * *  * | 1 0 0 1 0 0
x.. ... x..     & |  4 0 |  2 2  0 0 0 0 | * 8  *  *  * *  * | 1 1 0 0 0 0
xx. ... ...&#x  & |  2 2 |  1 0  2 0 1 0 | * * 16  *  * *  * | 0 1 0 0 1 0
... ox. ...&#x  & |  1 2 |  0 0  2 0 0 1 | * *  * 16  * *  * | 0 0 1 0 0 1
... ... xo.&#x  & |  2 1 |  0 1  2 0 0 0 | * *  *  * 16 *  * | 0 1 1 0 0 0
x.x ... ...&#x    |  4 0 |  2 0  0 2 0 0 | * *  *  *  * 8  * | 0 0 0 1 1 0
ooo4ooo ooo&#x    |  2 1 |  0 0  2 1 0 0 | * *  *  *  * * 16 | 0 0 0 0 1 1
------------------+------+---------------+-------------------+------------
x..4o.. x..     & ♦  8 0 |  8 4  0 0 0 0 | 2 4  0  0  0 0  0 | 2 * * * * *
xx. ... xo.&#x  & ♦  4 2 |  2 2  4 0 1 0 | 0 1  2  0  2 0  0 | * 8 * * * *
... ox. xo.&#x  & ♦  2 2 |  0 1  4 0 0 1 | 0 0  0  2  2 0  0 | * * 8 * * *
x.x4o.o ...&#x    ♦  8 0 |  8 0  0 4 0 0 | 2 0  0  0  0 4  0 | * * * 2 * *
xxx ... ...&#x    ♦  4 2 |  2 0  4 2 1 0 | 0 0  2  0  0 1  2 | * * * * 8 *
... oxo ...&#x    ♦  2 2 |  0 0  4 1 0 1 | 0 0  0  2  0 0  2 | * * * * * 8
```

```{4} || pseudo squobcu || {4}   → both heights = 1/sqrt(2) = 0.707107

4 * * * * | 2 1 2 1 0 0 0 0 0 0 0 0 0 0 | 1 2 2 2 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 1 2 2 1 1 0 0 0 0 0 0  top (A)
* 4 * * * | 0 1 0 0 2 2 1 0 0 0 0 0 0 0 | 0 2 0 0 2 0 0 1 2 2 1 2 0 0 0 0 0 0 0 0 | 1 0 2 0 1 0 1 2 1 0 0 0  equatorial (A)
* * 8 * * | 0 0 1 0 0 1 0 1 1 1 1 0 0 0 | 0 0 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 0 0 0 | 0 0 1 1 1 1 0 1 1 1 1 0  equatorial (B)
* * * 4 * | 0 0 0 1 0 0 0 0 0 2 0 2 1 0 | 0 0 0 2 0 0 2 0 0 0 0 0 2 1 0 0 2 1 2 0 | 0 1 0 2 0 1 0 0 0 2 1 1  equatorial (A)
* * * * 4 | 0 0 0 0 0 0 1 0 0 0 2 0 1 2 | 0 0 0 0 0 0 0 0 0 2 0 2 0 0 2 1 2 0 2 1 | 0 0 0 0 0 0 1 2 1 2 1 1  bottom (A)
----------+-----------------------------+-----------------------------------------+------------------------
2 0 0 0 0 | 4 * * * * * * * * * * * * * | 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 1 1 1 0 0 0 0 0 0 0 0
1 1 0 0 0 | * 4 * * * * * * * * * * * * | 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 0 2 0 1 0 0 0 0 0 0 0
1 0 1 0 0 | * * 8 * * * * * * * * * * * | 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 1 1 1 1 0 0 0 0 0 0
1 0 0 1 0 | * * * 4 * * * * * * * * * * | 0 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 1 0 2 0 1 0 0 0 0 0 0
0 2 0 0 0 | * * * * 4 * * * * * * * * * | 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 | 1 0 1 0 0 0 1 1 0 0 0 0
0 1 1 0 0 | * * * * * 8 * * * * * * * * | 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 | 0 0 1 0 1 0 0 1 1 0 0 0
0 1 0 0 1 | * * * * * * 4 * * * * * * * | 0 0 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 1 2 1 0 0 0
0 0 2 0 0 | * * * * * * * 4 * * * * * * | 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 | 0 0 1 1 0 0 0 1 0 1 0 0  para
0 0 2 0 0 | * * * * * * * * 4 * * * * * | 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 | 0 0 0 0 1 1 0 0 1 0 1 0  obligue
0 0 1 1 0 | * * * * * * * * * 8 * * * * | 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 | 0 0 0 1 0 1 0 0 0 1 1 0
0 0 1 0 1 | * * * * * * * * * * 8 * * * | 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 | 0 0 0 0 0 0 0 1 1 1 1 0
0 0 0 2 0 | * * * * * * * * * * * 4 * * | 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 | 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 1 1 | * * * * * * * * * * * * 4 * | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 | 0 0 0 0 0 0 0 0 0 2 1 1
0 0 0 0 2 | * * * * * * * * * * * * * 4 | 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 | 0 0 0 0 0 0 1 1 0 1 0 1
----------+-----------------------------+-----------------------------------------+------------------------
4 0 0 0 0 | 4 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 * * * * * * * * * * * * * * * * * * * | 1 1 0 0 0 0 0 0 0 0 0 0
2 2 0 0 0 | 1 2 0 0 1 0 0 0 0 0 0 0 0 0 | * 4 * * * * * * * * * * * * * * * * * * | 1 0 1 0 0 0 0 0 0 0 0 0
2 0 2 0 0 | 1 0 2 0 0 0 0 1 0 0 0 0 0 0 | * * 4 * * * * * * * * * * * * * * * * * | 0 0 1 1 0 0 0 0 0 0 0 0
2 0 0 2 0 | 1 0 0 2 0 0 0 0 0 0 0 1 0 0 | * * * 4 * * * * * * * * * * * * * * * * | 0 1 0 1 0 0 0 0 0 0 0 0
1 1 1 0 0 | 0 1 1 0 0 1 0 0 0 0 0 0 0 0 | * * * * 8 * * * * * * * * * * * * * * * | 0 0 1 0 1 0 0 0 0 0 0 0
1 0 2 0 0 | 0 0 2 0 0 0 0 0 1 0 0 0 0 0 | * * * * * 4 * * * * * * * * * * * * * * | 0 0 0 0 1 1 0 0 0 0 0 0
1 0 1 1 0 | 0 0 1 1 0 0 0 0 0 1 0 0 0 0 | * * * * * * 8 * * * * * * * * * * * * * | 0 0 0 1 0 1 0 0 0 0 0 0
0 4 0 0 0 | 0 0 0 0 4 0 0 0 0 0 0 0 0 0 | * * * * * * * 1 * * * * * * * * * * * * | 1 0 0 0 0 0 1 0 0 0 0 0
0 2 2 0 0 | 0 0 0 0 1 2 0 1 0 0 0 0 0 0 | * * * * * * * * 4 * * * * * * * * * * * | 0 0 1 0 0 0 0 1 0 0 0 0
0 2 0 0 2 | 0 0 0 0 1 0 2 0 0 0 0 0 0 1 | * * * * * * * * * 4 * * * * * * * * * * | 0 0 0 0 0 0 1 1 0 0 0 0
0 1 2 0 0 | 0 0 0 0 0 2 0 0 1 0 0 0 0 0 | * * * * * * * * * * 4 * * * * * * * * * | 0 0 0 0 1 0 0 0 1 0 0 0
0 1 1 0 1 | 0 0 0 0 0 1 1 0 0 0 1 0 0 0 | * * * * * * * * * * * 8 * * * * * * * * | 0 0 0 0 0 0 0 1 1 0 0 0
0 0 2 2 0 | 0 0 0 0 0 0 0 1 0 2 0 1 0 0 | * * * * * * * * * * * * 4 * * * * * * * | 0 0 0 1 0 0 0 0 0 1 0 0
0 0 2 1 0 | 0 0 0 0 0 0 0 0 1 2 0 0 0 0 | * * * * * * * * * * * * * 4 * * * * * * | 0 0 0 0 0 1 0 0 0 0 1 0
0 0 2 0 2 | 0 0 0 0 0 0 0 1 0 0 2 0 0 1 | * * * * * * * * * * * * * * 4 * * * * * | 0 0 0 0 0 0 0 1 0 1 0 0
0 0 2 0 1 | 0 0 0 0 0 0 0 0 1 0 2 0 0 0 | * * * * * * * * * * * * * * * 4 * * * * | 0 0 0 0 0 0 0 0 1 0 1 0
0 0 1 1 1 | 0 0 0 0 0 0 0 0 0 1 1 0 1 0 | * * * * * * * * * * * * * * * * 8 * * * | 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 4 0 | 0 0 0 0 0 0 0 0 0 0 0 4 0 0 | * * * * * * * * * * * * * * * * * 1 * * | 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 2 2 | 0 0 0 0 0 0 0 0 0 0 0 1 2 1 | * * * * * * * * * * * * * * * * * * 4 * | 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 4 | 0 0 0 0 0 0 0 0 0 0 0 0 0 4 | * * * * * * * * * * * * * * * * * * * 1 | 0 0 0 0 0 0 1 0 0 0 0 1
----------+-----------------------------+-----------------------------------------+------------------------
4 4 0 0 0 | 4 4 0 0 4 0 0 0 0 0 0 0 0 0 | 1 4 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | 1 * * * * * * * * * * *  cube
4 0 0 4 0 | 4 0 0 4 0 0 0 0 0 0 0 4 0 0 | 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 | * 1 * * * * * * * * * *  cube
2 2 2 0 0 | 1 2 2 0 1 2 0 1 0 0 0 0 0 0 | 0 1 1 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 | * * 4 * * * * * * * * *  trip
2 0 2 2 0 | 1 0 2 2 0 0 0 1 0 2 0 1 0 0 | 0 0 1 1 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 | * * * 4 * * * * * * * *  trip
1 1 2 0 0 | 0 1 2 0 0 2 0 0 1 0 0 0 0 0 | 0 0 0 0 2 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 | * * * * 4 * * * * * * *  tet
1 0 2 1 0 | 0 0 2 1 0 0 0 0 1 2 0 0 0 0 | 0 0 0 0 0 1 2 0 0 0 0 0 0 1 0 0 0 0 0 0 | * * * * * 4 * * * * * *  tet
0 4 0 0 4 | 0 0 0 0 4 0 4 0 0 0 0 0 0 4 | 0 0 0 0 0 0 0 1 0 4 0 0 0 0 0 0 0 0 0 1 | * * * * * * 1 * * * * *  cube
0 2 2 0 2 | 0 0 0 0 1 2 2 1 0 0 2 0 0 1 | 0 0 0 0 0 0 0 0 1 1 0 2 0 0 1 0 0 0 0 0 | * * * * * * * 4 * * * *  trip
0 1 2 0 1 | 0 0 0 0 0 2 1 0 1 0 2 0 0 0 | 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 1 0 0 0 0 | * * * * * * * * 4 * * *  tet
0 0 2 2 2 | 0 0 0 0 0 0 0 1 0 2 2 1 2 1 | 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 2 0 1 0 | * * * * * * * * * 4 * *  trip
0 0 2 1 1 | 0 0 0 0 0 0 0 0 1 2 2 0 1 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 2 0 0 0 | * * * * * * * * * * 4 *  tet
0 0 0 4 4 | 0 0 0 0 0 0 0 0 0 0 0 4 4 4 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 1 | * * * * * * * * * * * 1  cube
```

```x(xx)x4o(ox)o o(qo)o&#xt   → both heights = 1/sqrt(2) = 0.707107
({4} || pseudo squobcu || {4})

o(..).4o(..). o(..).     & | 8 * * | 2  2  2 0  0 0 0 | 1  4 2 1  4 0 0 0 | 2  4  2
.(o.).4.(o.). .(o.).       | * 8 * | 0  2  0 2  2 0 0 | 0  4 0 0  4 1 2 1 | 2  4  2
.(.o).4.(.o). .(.o).       | * * 8 | 0  0  2 0  2 1 1 | 0  0 2 2  4 0 2 2 | 0  4  4
---------------------------+-------+------------------+-------------------+--------
x(..). .(..). .(..).     & | 2 0 0 | 8  *  * *  * * * | 1  2 1 0  0 0 0 0 | 2  2  0
o(o.).4o(o.). o(o.).&#x  & | 1 1 0 | * 16  * *  * * * | 0  2 0 0  2 0 0 0 | 1  2  1
o(.o).4o(.o). o(.o).&#x  & | 1 0 1 | *  * 16 *  * * * | 0  0 1 1  2 0 0 0 | 0  2  2
.(x.). .(..). .(..).       | 0 2 0 | *  *  * 8  * * * | 0  2 0 0  0 1 1 0 | 2  2  0
.(oo).4.(oo). .(oo).&#x    | 0 1 1 | *  *  * * 16 * * | 0  0 0 0  2 0 1 1 | 0  2  2
.(.x). .(..). .(..).       | 0 0 2 | *  *  * *  * 4 * | 0  0 2 0  0 0 2 0 | 0  4  0
.(..). .(.x). .(..).       | 0 0 2 | *  *  * *  * * 4 | 0  0 0 2  0 0 0 2 | 0  0  4
---------------------------+-------+------------------+-------------------+--------
x(..).4o(..). .(..).     & | 4 0 0 | 4  0  0 0  0 0 0 | 2  * * *  * * * * | 2  0  0
x(x.). .(..). .(..).     & | 2 2 0 | 1  2  0 1  0 0 0 | * 16 * *  * * * * | 1  1  0
x(.x). .(..). .(..).     & | 2 0 2 | 1  0  2 0  0 1 0 | *  * 8 *  * * * * | 0  2  0
.(..). o(.x). .(..).     & | 1 0 2 | 0  0  2 0  0 0 1 | *  * * 8  * * * * | 0  0  2
o(oo).4o(oo). o(oo).&#x    | 1 1 1 | 0  1  1 0  1 0 0 | *  * * * 32 * * * | 0  1  1
.(x.).4.(o.). .(..).       | 0 4 0 | 0  0  0 4  0 0 0 | *  * * *  * 2 * * | 2  0  0
.(xx). .(..). .(..).&#x    | 0 2 2 | 0  0  0 1  2 1 0 | *  * * *  * * 8 * | 0  2  0
.(..). .(ox). .(..).&#x    | 0 1 2 | 0  0  0 0  2 0 1 | *  * * *  * * * 8 | 0  0  2
---------------------------+-------+------------------+-------------------+--------
x(x.).4o(o.). .(..).     & ♦ 4 4 0 | 4  4  0 4  0 0 0 | 1  4 0 0  0 1 0 0 | 4  *  *
x(xx). .(..). .(..).     & ♦ 2 2 2 | 1  2  2 1  2 1 0 | 0  1 1 0  2 0 1 0 | * 16  *
.(..). o(ox). .(..).&#x  & ♦ 1 1 2 | 0  1  2 0  2 0 1 | 0  0 0 1  2 0 0 1 | *  * 16
```

```o(qoo)o x(xwx)x x(xxw)x&#xt   → both heights = 1/sqrt(2) = 0.707107
({4} || pseudo squobcu || {4})

o(...). o(...). o(...).    | 4 * * * * | 1 1 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 | 1 2 2 1 1 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 | 2 2 2 2 0 0 0 0
.(o..). .(o..). .(o..).    | * 8 * * * | 0 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 | 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 | 1 1 1 1 1 1 1 1
.(.o.). .(.o.). .(.o.).    | * * 4 * * | 0 0 0 1 0 0 0 2 0 0 1 1 1 0 0 0 0 | 0 0 0 1 0 2 0 1 0 2 0 0 0 2 2 0 1 1 0 0 | 0 2 0 2 0 2 0 2
.(..o). .(..o). .(..o).    | * * * 4 * | 0 0 0 0 1 0 0 0 2 0 0 1 0 1 1 0 0 | 0 0 0 0 1 0 2 1 0 0 2 0 0 2 0 2 0 1 1 0 | 0 0 2 2 0 0 2 2
.(...)o .(...)o .(...)o    | * * * * 4 | 0 0 0 0 0 0 0 0 0 2 0 0 1 0 1 1 1 | 0 0 0 0 0 0 0 0 0 0 0 2 2 0 2 2 1 1 1 1 | 0 0 0 0 2 2 2 2
---------------------------+-----------+-----------------------------------+-----------------------------------------+----------------
.(...). x(...). .(...).    | 2 0 0 0 0 | 2 * * * * * * * * * * * * * * * * | 1 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2 0 2 0 0 0 0 0
.(...). .(...). x(...).    | 2 0 0 0 0 | * 2 * * * * * * * * * * * * * * * | 1 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2 2 0 0 0 0 0 0
o(o..). o(o..). o(o..).&#x | 1 1 0 0 0 | * * 8 * * * * * * * * * * * * * * | 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 1 1 1 0 0 0 0
o(.o.). o(.o.). o(.o.).&#x | 1 0 1 0 0 | * * * 4 * * * * * * * * * * * * * | 0 0 0 1 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | 0 2 0 2 0 0 0 0
o(..o). o(..o). o(..o).&#x | 1 0 0 1 0 | * * * * 4 * * * * * * * * * * * * | 0 0 0 0 1 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 2 2 0 0 0 0
.(...). .(x..). .(...).    | 0 2 0 0 0 | * * * * * 4 * * * * * * * * * * * | 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 | 1 0 1 0 1 0 1 0
.(...). .(...). .(x..).    | 0 2 0 0 0 | * * * * * * 4 * * * * * * * * * * | 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 | 1 1 0 0 1 1 0 0
.(oo.). .(oo.). .(oo.).&#x | 0 1 1 0 0 | * * * * * * * 8 * * * * * * * * * | 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 | 0 1 0 1 0 1 0 1
.(o.o). .(o.o). .(o.o).&#x | 0 1 0 1 0 | * * * * * * * * 8 * * * * * * * * | 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 | 0 0 1 1 0 0 1 1
.(o..)o .(o..)o .(o..)o&#x | 0 1 0 0 1 | * * * * * * * * * 8 * * * * * * * | 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 | 0 0 0 0 1 1 1 1
.(...). .(...). .(.x.).    | 0 0 2 0 0 | * * * * * * * * * * 2 * * * * * * | 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 | 0 2 0 0 0 2 0 0
.(.oo). .(.oo). .(.oo).&#x | 0 0 1 1 0 | * * * * * * * * * * * 4 * * * * * | 0 0 0 0 0 0 0 1 0 0 0 0 0 2 0 0 0 1 0 0 | 0 0 0 2 0 0 0 2
.(.o.)o .(.o.)o .(.o.)o&#x | 0 0 1 0 1 | * * * * * * * * * * * * 4 * * * * | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 1 0 0 | 0 0 0 0 0 2 0 2
.(...). .(..x). .(...).    | 0 0 0 2 0 | * * * * * * * * * * * * * 2 * * * | 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 | 0 0 2 0 0 0 2 0
.(..o)o .(..o)o .(..o)o&#x | 0 0 0 1 1 | * * * * * * * * * * * * * * 4 * * | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 1 0 | 0 0 0 0 0 0 2 2
.(...). .(...)x .(...).    | 0 0 0 0 2 | * * * * * * * * * * * * * * * 2 * | 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 1 | 0 0 0 0 2 0 2 0
.(...). .(...). .(...)x    | 0 0 0 0 2 | * * * * * * * * * * * * * * * * 2 | 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 1 | 0 0 0 0 2 2 0 0
---------------------------+-----------+-----------------------------------+-----------------------------------------+----------------
.(...). x(...). x(...).    | 4 0 0 0 0 | 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 * * * * * * * * * * * * * * * * * * * | 2 0 0 0 0 0 0 0
.(...). x(x..). .(...).&#x | 2 2 0 0 0 | 1 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 | * 4 * * * * * * * * * * * * * * * * * * | 1 0 1 0 0 0 0 0
.(...). .(...). x(x..).&#x | 2 2 0 0 0 | 0 1 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 | * * 4 * * * * * * * * * * * * * * * * * | 1 1 0 0 0 0 0 0
.(...). .(...). x(.x.).&#x | 2 0 2 0 0 | 0 1 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 | * * * 2 * * * * * * * * * * * * * * * * | 0 2 0 0 0 0 0 0
.(...). x(..x). .(...).&#x | 2 0 0 2 0 | 1 0 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 | * * * * 2 * * * * * * * * * * * * * * * | 0 0 2 0 0 0 0 0
o(oo.). o(oo.). o(oo.).&#x | 1 1 1 0 0 | 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 | * * * * * 8 * * * * * * * * * * * * * * | 0 1 0 1 0 0 0 0
o(o.o). o(o.o). o(o.o).&#x | 1 1 0 1 0 | 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 | * * * * * * 8 * * * * * * * * * * * * * | 0 0 1 1 0 0 0 0
o(.oo). o(.oo). o(.oo).&#x | 1 0 1 1 0 | 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 | * * * * * * * 4 * * * * * * * * * * * * | 0 0 0 2 0 0 0 0
.(...). .(x..). .(x..).    | 0 4 0 0 0 | 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 | * * * * * * * * 2 * * * * * * * * * * * | 1 0 0 0 1 0 0 0
.(...). .(...). .(xx.).&#x | 0 2 2 0 0 | 0 0 0 0 0 0 1 2 0 0 1 0 0 0 0 0 0 | * * * * * * * * * 4 * * * * * * * * * * | 0 1 0 0 0 1 0 0
.(...). .(x.x). .(...).&#x | 0 2 0 2 0 | 0 0 0 0 0 1 0 0 2 0 0 0 0 1 0 0 0 | * * * * * * * * * * 4 * * * * * * * * * | 0 0 1 0 0 0 1 0
.(...). .(x..)x .(...).&#x | 0 2 0 0 2 | 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 1 0 | * * * * * * * * * * * 4 * * * * * * * * | 0 0 0 0 1 0 1 0
.(...). .(...). .(x..)x&#x | 0 2 0 0 2 | 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 1 | * * * * * * * * * * * * 4 * * * * * * * | 0 0 0 0 1 1 0 0
.(ooo). .(ooo). .(ooo).&#x | 0 1 1 1 0 | 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 | * * * * * * * * * * * * * 8 * * * * * * | 0 0 0 1 0 0 0 1
.(oo.)o .(oo.)o .(oo.)o&#x | 0 1 1 0 1 | 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 | * * * * * * * * * * * * * * 8 * * * * * | 0 0 0 0 0 1 0 1
.(o.o)o .(o.o)o .(o.o)o&#x | 0 1 0 1 1 | 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 | * * * * * * * * * * * * * * * 8 * * * * | 0 0 0 0 0 0 1 1
.(...). .(...). .(.x.)x&#x | 0 0 2 0 2 | 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 1 | * * * * * * * * * * * * * * * * 2 * * * | 0 0 0 0 0 2 0 0
.(.oo)o .(.oo)o .(.oo)o&#x | 0 0 1 1 1 | 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 | * * * * * * * * * * * * * * * * * 4 * * | 0 0 0 0 0 0 0 2
.(...). .(..x)x .(...).&#x | 0 0 0 2 2 | 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 0 | * * * * * * * * * * * * * * * * * * 2 * | 0 0 0 0 0 0 2 0
.(...). .(...)x .(...)x    | 0 0 0 0 4 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 | * * * * * * * * * * * * * * * * * * * 1 | 0 0 0 0 2 0 0 0
---------------------------+-----------+-----------------------------------+-----------------------------------------+----------------
.(...). x(x..). x(x..).&#x ♦ 4 4 0 0 0 | 2 2 4 0 0 2 2 0 0 0 0 0 0 0 0 0 0 | 1 2 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 | 2 * * * * * * *
.(...). .(...). x(xx.).&#x ♦ 2 2 2 0 0 | 0 1 2 2 0 0 1 2 0 0 1 0 0 0 0 0 0 | 0 0 1 1 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 | * 4 * * * * * *
.(...). x(x.x). .(...).&#x ♦ 2 2 0 2 0 | 1 0 2 0 2 1 0 0 2 0 0 0 0 1 0 0 0 | 0 1 0 0 1 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 | * * 4 * * * * *
o(ooo). o(ooo). o(ooo).&#x ♦ 1 1 1 1 0 | 0 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 0 | 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 | * * * 8 * * * *
.(...). .(x..)x .(x..)x&#x ♦ 0 4 0 0 4 | 0 0 0 0 0 2 2 0 0 4 0 0 0 0 0 2 2 | 0 0 0 0 0 0 0 0 1 0 0 2 2 0 0 0 0 0 0 1 | * * * * 2 * * *
.(...). .(...). .(xx.)x&#x ♦ 0 2 2 0 2 | 0 0 0 0 0 0 1 2 0 2 1 0 2 0 0 0 1 | 0 0 0 0 0 0 0 0 0 1 0 0 1 0 2 0 1 0 0 0 | * * * * * 4 * *
.(...). .(x.x)x .(...).&#x ♦ 0 2 0 2 2 | 0 0 0 0 0 1 0 0 2 2 0 0 0 1 2 1 0 | 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 2 0 0 1 0 | * * * * * * 4 *
.(ooo)o .(ooo)o .(ooo)o&#x ♦ 0 1 1 1 1 | 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 | * * * * * * * 8
```

```xo4xx ox4oo&#zx   → all heights = 0
(tegum sum of {8} and tes)

o.4o. o.4o.     | 8  * | 1 1  4  0  0 |  4  4  4  0 0 |  4  4 0  (B)
.o4.o .o4.o     | * 16 | 0 0  2  2  2 |  1  2  4  4 1 |  2  4 2  (A)
----------------+------+--------------+---------------+--------
x. .. .. ..     | 2  0 | 4 *  *  *  * |  4  0  0  0 0 |  4  0 0
.. x. .. ..     | 2  0 | * 4  *  *  * |  0  4  0  0 0 |  0  4 0
oo4oo oo4oo&#x  | 1  1 | * * 32  *  * |  1  1  2  0 0 |  2  2 0
.. .x .. ..     | 0  2 | * *  * 16  * |  0  1  0  2 0 |  0  2 1
.. .. .x ..     | 0  2 | * *  *  * 16 |  0  0  2  2 1 |  1  2 2
----------------+------+--------------+---------------+--------
xo .. .. ..&#x  | 2  1 | 1 0  2  0  0 | 16  *  *  * * |  2  0 0
.. xx .. ..&#x  | 2  2 | 0 1  2  1  0 |  * 16  *  * * |  0  2 0
.. .. ox ..&#x  | 1  2 | 0 0  2  0  1 |  *  * 32  * * |  1  1 0
.. .x .x ..     | 0  4 | 0 0  0  2  2 |  *  *  * 16 * |  0  1 1
.. .. .x4.o     | 0  4 | 0 0  0  0  4 |  *  *  *  * 4 |  0  0 2
----------------+------+--------------+---------------+--------
xo .. ox ..&#x  ♦ 2  2 | 1 0  4  0  1 |  2  0  2  0 0 | 16  * *
.. xx ox ..&#x  ♦ 2  4 | 0 1  4  2  2 |  0  2  2  1 0 |  * 16 *
.. .x .x4.o     ♦ 0  8 | 0 0  0  4  8 |  0  0  0  4 2 |  *  * 4
```

```wxxx xwxx ooqo oooq&#zx   → all heights = 0
(tegum sum of 2 mutually gyrated (w,x)-{4} and 2 likewise mutually gyrated (not fully) ortho (x,x,q)-cubes)

o... o... o... o...     | 4 * * * | 1 1 2 2 0 0 0 0 0  0 0 0 | 2 2 2 2  4 0 0  0 0 0 0 0 | 4  4 0 0
.o.. .o.. .o.. .o..     | * 4 * * | 0 1 0 0 1 2 2 0 0  0 0 0 | 0 0 2 2  0 2 2  4 0 0 0 0 | 0  4 4 0
..o. ..o. ..o. ..o.     | * * 8 * | 0 0 1 0 0 1 0 1 1  2 0 0 | 1 0 1 0  2 1 0  2 1 2 2 0 | 2  2 2 2
...o ...o ...o ...o     | * * * 8 | 0 0 0 1 0 0 1 0 0  2 1 1 | 0 1 0 1  2 0 1  2 0 2 2 1 | 2  2 2 2
------------------------+---------+--------------------------+---------------------------+---------
.... x... .... ....     | 2 0 0 0 | 2 * * * * * * * *  * * * | 2 2 0 0  0 0 0  0 0 0 0 0 | 4  0 0 0
oo.. oo.. oo.. oo..&#x  | 1 1 0 0 | * 4 * * * * * * *  * * * | 0 0 2 2  0 0 0  0 0 0 0 0 | 0  4 0 0
o.o. o.o. o.o. o.o.&#x  | 1 0 1 0 | * * 8 * * * * * *  * * * | 1 0 1 0  2 0 0  0 0 0 0 0 | 2  2 0 0
o..o o..o o..o o..o&#x  | 1 0 0 1 | * * * 8 * * * * *  * * * | 0 1 0 1  2 0 0  0 0 0 0 0 | 2  2 0 0
.x.. .... .... ....     | 0 2 0 0 | * * * * 2 * * * *  * * * | 0 0 0 0  0 2 2  0 0 0 0 0 | 0  0 4 0
.oo. .oo. .oo. .oo.&#x  | 0 1 1 0 | * * * * * 8 * * *  * * * | 0 0 1 0  0 1 0  2 0 0 0 0 | 0  2 2 0
.o.o .o.o .o.o .o.o&#x  | 0 1 0 1 | * * * * * * 8 * *  * * * | 0 0 0 1  0 0 1  2 0 0 0 0 | 0  2 2 0
..x. .... .... ....     | 0 0 2 0 | * * * * * * * 4 *  * * * | 0 0 0 0  0 1 0  0 1 2 0 0 | 0  0 2 2
.... ..x. .... ....     | 0 0 2 0 | * * * * * * * * 4  * * * | 1 0 0 0  0 0 0  0 1 0 2 0 | 2  0 0 2
..oo ..oo ..oo ..oo&#x  | 0 0 1 1 | * * * * * * * * * 16 * * | 0 0 0 0  1 0 0  1 0 1 1 0 | 1  1 1 1
...x .... .... ....     | 0 0 0 2 | * * * * * * * * *  * 4 * | 0 0 0 0  0 0 1  0 0 2 0 1 | 0  0 2 2
.... ...x .... ....     | 0 0 0 2 | * * * * * * * * *  * * 4 | 0 1 0 0  0 0 0  0 0 0 2 1 | 2  0 0 2
------------------------+---------+--------------------------+---------------------------+---------
.... x.x. .... ....&#x  | 2 0 2 0 | 1 0 2 0 0 0 0 0 1  0 0 0 | 4 * * *  * * *  * * * * * | 2  0 0 0
.... x..x .... ....&#x  | 2 0 0 2 | 1 0 0 2 0 0 0 0 0  0 0 1 | * 4 * *  * * *  * * * * * | 2  0 0 0
ooo. ooo. ooo. ooo.&#x  | 1 1 1 0 | 0 1 1 0 0 1 0 0 0  0 0 0 | * * 8 *  * * *  * * * * * | 0  2 0 0
oo.o oo.o oo.o oo.o&#x  | 1 1 0 1 | 0 1 0 1 0 0 1 0 0  0 0 0 | * * * 8  * * *  * * * * * | 0  2 0 0
o.oo o.oo o.oo o.oo&#x  | 1 0 1 1 | 0 0 1 1 0 0 0 0 0  1 0 0 | * * * * 16 * *  * * * * * | 1  1 0 0
.xx. .... .... ....&#x  | 0 2 2 0 | 0 0 0 0 1 2 0 1 0  0 0 0 | * * * *  * 4 *  * * * * * | 0  0 2 0
.x.x .... .... ....&#x  | 0 2 0 2 | 0 0 0 0 1 0 2 0 0  0 1 0 | * * * *  * * 4  * * * * * | 0  0 2 0
.ooo .ooo .ooo .ooo&#x  | 0 1 1 1 | 0 0 0 0 0 1 1 0 0  1 0 0 | * * * *  * * * 16 * * * * | 0  1 1 0
..x. ..x. .... ....     | 0 0 4 0 | 0 0 0 0 0 0 0 2 2  0 0 0 | * * * *  * * *  * 2 * * * | 0  0 0 2
..xx .... .... ....&#x  | 0 0 2 2 | 0 0 0 0 0 0 0 1 0  2 1 0 | * * * *  * * *  * * 8 * * | 0  0 1 1
.... ..xx .... ....&#x  | 0 0 2 2 | 0 0 0 0 0 0 0 0 1  2 0 1 | * * * *  * * *  * * * 8 * | 1  0 0 1
...x ...x .... ....     | 0 0 0 4 | 0 0 0 0 0 0 0 0 0  0 2 2 | * * * *  * * *  * * * * 2 | 0  0 0 2
------------------------+---------+--------------------------+---------------------------+---------
.... x.xx .... ....&#x  ♦ 2 0 2 2 | 1 0 2 2 0 0 0 0 1  2 0 1 | 1 1 0 0  2 0 0  0 0 0 1 0 | 8  * * *
oooo oooo oooo oooo&#x  ♦ 1 1 1 1 | 0 1 1 1 0 1 1 0 0  1 0 0 | 0 0 1 1  1 0 0  1 0 0 0 0 | * 16 * *
.xxx .... .... ....&#x  ♦ 0 2 2 2 | 0 0 0 0 1 2 2 1 0  2 1 0 | 0 0 0 0  0 1 1  2 0 1 0 0 | *  * 8 *
..xx ..xx .... ....&#x  ♦ 0 0 4 4 | 0 0 0 0 0 0 0 2 2  4 2 2 | 0 0 0 0  0 0 0  0 1 2 2 1 | *  * * 4
```

```    o4o   o4o
A     A
o4o o4x   o4x o4o
B   C     C   B

o4o o4x   o4x o4o
D   E     E   D
o4o   o4o
F     F
line || pseudo esquidpy || pseudo esquidpy || line

2 * * * * * | 1 1 4 0 0 0 0 0 0 0 0 0 0 0 | 4 4 4 0 0 0 0 0 0 0 0 0 0 | 4 4 0 0 0 0  A
* 2 * * * * | 0 1 0 4 1 0 0 0 0 0 0 0 0 0 | 0 4 0 4 4 0 0 0 0 0 0 0 0 | 0 4 4 0 0 0  B
* * 8 * * * | 0 0 1 1 0 2 1 1 0 0 0 0 0 0 | 1 1 2 2 1 2 2 1 0 0 0 0 0 | 2 2 2 2 0 0  C
* * * 2 * * | 0 0 0 0 1 0 0 0 4 1 0 0 0 0 | 0 0 0 0 4 0 0 0 4 4 0 0 0 | 0 0 4 0 4 0  D
* * * * 8 * | 0 0 0 0 0 0 0 1 1 0 2 1 1 0 | 0 0 0 0 1 0 2 1 2 1 2 2 1 | 0 0 2 2 2 2  E
* * * * * 2 | 0 0 0 0 0 0 0 0 0 1 0 0 4 1 | 0 0 0 0 0 0 0 0 0 4 0 4 4 | 0 0 0 0 4 4  F
------------+-----------------------------+---------------------------+------------
2 0 0 0 0 0 | 1 * * * * * * * * * * * * * | 4 0 0 0 0 0 0 0 0 0 0 0 0 | 4 0 0 0 0 0
1 1 0 0 0 0 | * 2 * * * * * * * * * * * * | 0 4 0 0 0 0 0 0 0 0 0 0 0 | 0 4 0 0 0 0
1 0 1 0 0 0 | * * 8 * * * * * * * * * * * | 1 1 2 0 0 0 0 0 0 0 0 0 0 | 2 2 0 0 0 0
0 1 1 0 0 0 | * * * 8 * * * * * * * * * * | 0 1 0 2 1 0 0 0 0 0 0 0 0 | 0 2 2 0 0 0
0 1 0 1 0 0 | * * * * 2 * * * * * * * * * | 0 0 0 0 4 0 0 0 0 0 0 0 0 | 0 0 4 0 0 0
0 0 2 0 0 0 | * * * * * 8 * * * * * * * * | 0 0 1 1 0 1 1 0 0 0 0 0 0 | 1 1 1 1 0 0  (within each C)
0 0 2 0 0 0 | * * * * * * 4 * * * * * * * | 1 0 0 0 0 2 0 1 0 0 0 0 0 | 2 0 0 2 0 0  (from C to C)
0 0 1 0 1 0 | * * * * * * * 8 * * * * * * | 0 0 0 0 1 0 2 1 0 0 0 0 0 | 0 0 2 2 0 0
0 0 0 1 1 0 | * * * * * * * * 8 * * * * * | 0 0 0 0 1 0 0 0 2 1 0 0 0 | 0 0 2 0 2 0
0 0 0 1 0 1 | * * * * * * * * * 2 * * * * | 0 0 0 0 0 0 0 0 0 4 0 0 0 | 0 0 0 0 4 0
0 0 0 0 2 0 | * * * * * * * * * * 8 * * * | 0 0 0 0 0 0 1 0 1 0 1 1 0 | 0 0 1 1 1 1  (within each E)
0 0 0 0 2 0 | * * * * * * * * * * * 4 * * | 0 0 0 0 0 0 0 1 0 0 2 0 1 | 0 0 0 2 0 2  (from E to E)
0 0 0 0 1 1 | * * * * * * * * * * * * 8 * | 0 0 0 0 0 0 0 0 0 1 0 2 1 | 0 0 0 0 2 2
0 0 0 0 0 2 | * * * * * * * * * * * * * 1 | 0 0 0 0 0 0 0 0 0 0 0 0 4 | 0 0 0 0 0 4
------------+-----------------------------+---------------------------+------------
2 0 2 0 0 0 | 1 0 2 0 0 0 1 0 0 0 0 0 0 0 | 4 * * * * * * * * * * * * | 2 0 0 0 0 0
1 1 1 0 0 0 | 0 1 1 1 0 0 0 0 0 0 0 0 0 0 | * 8 * * * * * * * * * * * | 0 2 0 0 0 0
1 0 2 0 0 0 | 0 0 2 0 0 1 0 0 0 0 0 0 0 0 | * * 8 * * * * * * * * * * | 1 1 0 0 0 0
0 1 2 0 0 0 | 0 0 0 2 0 1 0 0 0 0 0 0 0 0 | * * * 8 * * * * * * * * * | 0 1 1 0 0 0
0 1 1 1 1 0 | 0 0 0 1 1 0 0 1 1 0 0 0 0 0 | * * * * 8 * * * * * * * * | 0 0 2 0 0 0
0 0 4 0 0 0 | 0 0 0 0 0 2 2 0 0 0 0 0 0 0 | * * * * * 4 * * * * * * * | 1 0 0 1 0 0  (from C to C)
0 0 2 0 2 0 | 0 0 0 0 0 1 0 2 0 0 1 0 0 0 | * * * * * * 8 * * * * * * | 0 0 1 1 0 0  (within each C-E)
0 0 2 0 2 0 | 0 0 0 0 0 0 1 2 0 0 0 1 0 0 | * * * * * * * 4 * * * * * | 0 0 0 2 0 0  (from C-E to C-E)
0 0 0 1 2 0 | 0 0 0 0 0 0 0 0 2 0 1 0 0 0 | * * * * * * * * 8 * * * * | 0 0 1 0 1 0
0 0 0 1 1 1 | 0 0 0 0 0 0 0 0 1 1 0 0 1 0 | * * * * * * * * * 8 * * * | 0 0 0 0 2 0
0 0 0 0 4 0 | 0 0 0 0 0 0 0 0 0 0 2 2 0 0 | * * * * * * * * * * 4 * * | 0 0 0 1 0 1  (from E to E)
0 0 0 0 2 1 | 0 0 0 0 0 0 0 0 0 0 1 0 2 0 | * * * * * * * * * * * 8 * | 0 0 0 0 1 1
0 0 0 0 2 2 | 0 0 0 0 0 0 0 0 0 0 0 1 2 1 | * * * * * * * * * * * * 4 | 0 0 0 0 0 2
------------+-----------------------------+---------------------------+------------
2 0 4 0 0 0 | 1 0 4 0 0 2 2 0 0 0 0 0 0 0 | 2 0 2 0 0 1 0 0 0 0 0 0 0 | 4 * * * * *  trip
1 1 2 0 0 0 | 0 1 2 2 0 1 0 0 0 0 0 0 0 0 | 0 2 1 1 0 0 0 0 0 0 0 0 0 | * 8 * * * *  tet
0 1 2 1 2 0 | 0 0 0 2 1 1 0 2 2 0 1 0 0 0 | 0 0 0 1 2 0 1 0 1 0 0 0 0 | * * 8 * * *  trip
0 0 4 0 4 0 | 0 0 0 0 0 2 2 4 0 0 2 2 0 0 | 0 0 0 0 0 1 2 2 0 0 1 0 0 | * * * 4 * *  cube
0 0 0 1 2 1 | 0 0 0 0 0 0 0 0 2 1 1 0 2 0 | 0 0 0 0 0 0 0 0 1 2 0 1 0 | * * * * 8 *  tet
0 0 0 0 4 2 | 0 0 0 0 0 0 0 0 0 0 2 2 4 1 | 0 0 0 0 0 0 0 0 0 0 1 2 2 | * * * * * 4  trip
```

 © 2004-2021 top of page