Acronym | girco | |||||||||||||||||||||||||||||||||||||||||||||||||||
TOCID symbol | tCO | |||||||||||||||||||||||||||||||||||||||||||||||||||
Name |
great rhombicuboctahedron (but not querco), truncated cuboctahedron, omnitruncated octahedron, omnitruncated cube | |||||||||||||||||||||||||||||||||||||||||||||||||||
© © | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Circumradius | sqrt[13+6 sqrt(2)]/2 = 2.317611 | |||||||||||||||||||||||||||||||||||||||||||||||||||
Inradius wrt. {4} | (3+sqrt(2))/2 = 2.207107 | |||||||||||||||||||||||||||||||||||||||||||||||||||
Inradius wrt. {6} | sqrt[9+6 sqrt(2)]/2 = 2.090770 | |||||||||||||||||||||||||||||||||||||||||||||||||||
Inradius wrt. {8} | sqrt(2)+1/2 = 1.914214 | |||||||||||||||||||||||||||||||||||||||||||||||||||
Vertex figure | [4,6,8] | |||||||||||||||||||||||||||||||||||||||||||||||||||
Vertex layers |
(X=x+q+q, W=u+w, U=x+w) | |||||||||||||||||||||||||||||||||||||||||||||||||||
Lace city in approx. ASCII-art |
x w w x x X X x w X X w w X X w x X X x x w w x | |||||||||||||||||||||||||||||||||||||||||||||||||||
Coordinates | ((1+2 sqrt(2))/2, (1+sqrt(2))/2, 1/2) & all permutations, all changes of sign | |||||||||||||||||||||||||||||||||||||||||||||||||||
Volume | 2[11+7 sqrt(2)] = 41.798990 | |||||||||||||||||||||||||||||||||||||||||||||||||||
Surface | 12[2+sqrt(2)+sqrt(3)] = 61.755172 | |||||||||||||||||||||||||||||||||||||||||||||||||||
General of army | (is itself convex) | |||||||||||||||||||||||||||||||||||||||||||||||||||
Colonel of regiment | (is itself locally convex – no other uniform polyhedral members) | |||||||||||||||||||||||||||||||||||||||||||||||||||
Dihedral angles |
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Dual | m3m4m | |||||||||||||||||||||||||||||||||||||||||||||||||||
Face vector | 48, 72, 26 | |||||||||||||||||||||||||||||||||||||||||||||||||||
Confer |
| |||||||||||||||||||||||||||||||||||||||||||||||||||
External links |
The naming great rhombicuboctahedron derives from the fact that it has faces in the face planes of a rhombidodecahedron, of an cube, and of a octahedron. As there are 2 such archimedean figures the additional qualifier great versus small is being applied. Note that the respective scalings of those 3 constituents has to be adopted accordingly each.
When looking more into classes of isogonal variants, then this polyhedron also could be addressed as a truncated cuboctahedron. However true truncation would not produce squares there. In fact it rather would produce x3t4q instead, where the relative size of t depends on the truncational depth in an inverse ratio.
Note that girco can be thought of as the external blend of 1 sirco + 8 tricues + 6 squacues + 12 cubes, cf. the Steward toroid K4 \ 8Q3(E4). This decomposition is also described as the degenerate segmentochoron xx3ox4xx&#xt.
As abstract polytope girco is isomorphic to quitco, thereby replacing octagons by octagrams.
Incidence matrix according to Dynkin symbol
x3x4x . . . | 48 | 1 1 1 | 1 1 1 ------+----+----------+------- x . . | 2 | 24 * * | 1 1 0 . x . | 2 | * 24 * | 1 0 1 . . x | 2 | * * 24 | 0 1 1 ------+----+----------+------- x3x . | 6 | 3 3 0 | 8 * * x . x | 4 | 2 0 2 | * 12 * . x4x | 8 | 0 4 4 | * * 6 snubbed forms: β3x4x, x3β4x, x3x4s, s3s4x (or as mere faceting xwX wXx Xxw&#zh), β3x4β, x3β4β, s3s4s, β3β4β, s3s4s'
xxwwxx4xuxxux&#xt → height(1,2) = height(2,3) = height(4,5) = height(5,6) = 1/sqrt(2) = 0.707107 height(3,4) = 1 ({8} || pseudo (x,u)-{8} || pseudo (w,x)-{8} || pseudo (w,x)-{8} || pseudo (x,u)-{8} || {8}) o.....4o..... | 8 * * * * * | 1 1 1 0 0 0 0 0 0 0 0 0 0 | 1 1 1 0 0 0 0 0 .o....4.o.... | * 8 * * * * | 0 0 1 1 1 0 0 0 0 0 0 0 0 | 0 1 1 1 0 0 0 0 ..o...4..o... | * * 8 * * * | 0 0 0 0 1 1 1 0 0 0 0 0 0 | 0 0 1 1 1 0 0 0 ...o..4...o.. | * * * 8 * * | 0 0 0 0 0 0 1 1 1 0 0 0 0 | 0 0 0 1 1 1 0 0 ....o.4....o. | * * * * 8 * | 0 0 0 0 0 0 0 0 1 1 1 0 0 | 0 0 0 1 0 1 1 0 .....o4.....o | * * * * * 8 | 0 0 0 0 0 0 0 0 0 0 1 1 1 | 0 0 0 0 0 1 1 1 ------------------+-------------+---------------------------+---------------- x..... ...... | 2 0 0 0 0 0 | 4 * * * * * * * * * * * * | 1 1 0 0 0 0 0 0 ...... x..... | 2 0 0 0 0 0 | * 4 * * * * * * * * * * * | 1 0 1 0 0 0 0 0 oo....4oo....&#x | 1 1 0 0 0 0 | * * 8 * * * * * * * * * * | 0 1 1 0 0 0 0 0 .x.... ...... | 0 2 0 0 0 0 | * * * 4 * * * * * * * * * | 0 1 0 1 0 0 0 0 .oo...4.oo...&#x | 0 1 1 0 0 0 | * * * * 8 * * * * * * * * | 0 0 1 1 0 0 0 0 ...... ..x... | 0 0 2 0 0 0 | * * * * * 4 * * * * * * * | 0 0 1 0 1 0 0 0 ..oo..4..oo..&#x | 0 0 1 1 0 0 | * * * * * * 8 * * * * * * | 0 0 0 1 1 0 0 0 ...... ...x.. | 0 0 0 2 0 0 | * * * * * * * 4 * * * * * | 0 0 0 0 1 1 0 0 ...oo.4...oo.&#x | 0 0 0 1 1 0 | * * * * * * * * 8 * * * * | 0 0 0 1 0 1 0 0 ....x. ...... | 0 0 0 0 2 0 | * * * * * * * * * 4 * * * | 0 0 0 1 0 0 1 0 ....oo4....oo&#x | 0 0 0 0 1 1 | * * * * * * * * * * 8 * * | 0 0 0 0 0 1 1 0 .....x ...... | 0 0 0 0 0 2 | * * * * * * * * * * * 4 * | 0 0 0 0 0 0 1 1 ...... .....x | 0 0 0 0 0 2 | * * * * * * * * * * * * 4 | 0 0 0 0 0 1 0 1 ------------------+-------------+---------------------------+---------------- x.....4x..... | 8 0 0 0 0 0 | 4 4 0 0 0 0 0 0 0 0 0 0 0 | 1 * * * * * * * xx.... ......&#x | 2 2 0 0 0 0 | 1 0 2 1 0 0 0 0 0 0 0 0 0 | * 4 * * * * * * ...... xux...&#xt | 2 2 2 0 0 0 | 0 1 2 0 2 1 0 0 0 0 0 0 0 | * * 4 * * * * * .xwwx. ......&#xt | 0 2 2 2 2 0 | 0 0 0 1 2 0 2 0 2 1 0 0 0 | * * * 4 * * * * ...... ..xx..&#x | 0 0 2 2 0 0 | 0 0 0 0 0 1 2 1 0 0 0 0 0 | * * * * 4 * * * ...... ...xux&#xt | 0 0 0 2 2 2 | 0 0 0 0 0 0 0 1 2 0 2 0 1 | * * * * * 4 * * ....xx ......&#x | 0 0 0 0 2 2 | 0 0 0 0 0 0 0 0 0 1 2 1 0 | * * * * * * 4 * .....x4.....x | 0 0 0 0 0 8 | 0 0 0 0 0 0 0 0 0 0 0 4 4 | * * * * * * * 1
or o.....4o..... & | 16 * * | 1 1 1 0 0 0 0 | 1 1 1 0 0 .o....4.o.... & | * 16 * | 0 0 1 1 1 0 0 | 0 1 1 1 0 ..o...4..o... & | * * 16 | 0 0 0 0 1 1 1 | 0 0 1 1 1 ---------------------+----------+-----------------+---------- x..... ...... & | 2 0 0 | 8 * * * * * * | 1 1 0 0 0 ...... x..... & | 2 0 0 | * 8 * * * * * | 1 0 1 0 0 oo....4oo....&#x & | 1 1 0 | * * 16 * * * * | 0 1 1 0 0 .x.... ...... & | 0 2 0 | * * * 8 * * * | 0 1 0 1 0 .oo...4.oo...&#x & | 0 1 1 | * * * * 16 * * | 0 0 1 1 0 ...... ..x... & | 0 0 2 | * * * * * 8 * | 0 0 1 0 1 ..oo..4..oo..&#x | 0 0 2 | * * * * * * 8 | 0 0 0 1 1 ---------------------+----------+-----------------+---------- x.....4x..... & | 8 0 0 | 4 4 0 0 0 0 0 | 2 * * * * xx.... ......&#x & | 2 2 0 | 1 0 2 1 0 0 0 | * 8 * * * ...... xux...&#xt & | 2 2 2 | 0 1 2 0 2 1 0 | * * 8 * * .xwwx. ......&#xt | 0 4 4 | 0 0 0 2 4 0 2 | * * * 4 * ...... ..xx..&#x | 0 0 4 | 0 0 0 0 0 2 2 | * * * * 4
wx3xx3xw&#zx → height = 0 (tegum sum of 2 mutually inverse (w,x,x)-toes) o.3o.3o. | 24 * | 1 1 1 0 0 | 1 1 1 0 .o3.o3.o | * 24 | 0 0 1 1 1 | 0 1 1 1 -------------+-------+----------------+--------- .. x. .. | 2 0 | 12 * * * * | 1 0 1 0 .. .. x. | 2 0 | * 12 * * * | 1 1 0 0 oo3oo3oo&#x | 1 1 | * * 24 * * | 0 1 1 0 .x .. .. | 0 2 | * * * 12 * | 0 1 0 1 .. .x .. | 0 2 | * * * * 12 | 0 0 1 1 -------------+-------+----------------+--------- .. x.3x. | 6 0 | 3 3 0 0 0 | 4 * * * wx .. xw&#zx | 4 4 | 0 2 4 2 0 | * 6 * * .. xx ..&#x | 2 2 | 1 0 2 0 1 | * * 12 * .x3.x .. | 0 6 | 0 0 0 3 3 | * * * 4
or o.3o.3o. & | 48 | 1 1 1 | 1 1 1 ---------------+----+----------+------- .. x. .. & | 2 | 24 * * | 1 0 1 .. .. x. & | 2 | * 24 * | 1 1 0 oo3oo3oo&#x | 2 | * * 24 | 0 1 1 ---------------+----+----------+------- .. x.3x. & | 6 | 3 3 0 | 8 * * wx .. xw&#zx | 8 | 0 4 4 | * 6 * .. xx ..&#x | 4 | 2 0 2 | * * 12
xwX wxx4xux&#zxt → height = 0, X=x+q+q = 3.828427 o.. o..4o.. | 16 * * | 1 1 1 0 0 0 0 | 1 1 1 0 0 .o. .o.4.o. | * 16 * | 0 0 1 1 1 0 0 | 0 1 1 1 0 ..o ..o4..o | * * 16 | 0 0 0 0 1 1 1 | 0 0 1 1 1 ----------------+----------+-----------------+---------- x.. ... ... | 2 0 0 | 8 * * * * * * | 1 1 0 0 0 ... ... x.. | 2 0 0 | * 8 * * * * * | 1 0 1 0 0 oo. oo.4oo.&#x | 1 1 0 | * * 16 * * * * | 0 1 1 0 0 ... .x. ... | 0 2 0 | * * * 8 * * * | 0 1 0 1 0 .oo .oo4.oo&#x | 0 1 1 | * * * * 16 * * | 0 0 1 1 0 ... ..x ... | 0 0 2 | * * * * * 8 * | 0 0 0 1 1 ... ... ..x | 0 0 2 | * * * * * * 8 | 0 0 1 0 1 ----------------+----------+-----------------+---------- x.. ... x.. | 4 0 0 | 2 2 0 0 0 0 0 | 4 * * * * xw. wx. ...&#zx | 4 4 0 | 2 0 4 2 0 0 0 | * 4 * * * ... ... xux&#xt | 2 2 2 | 0 1 2 0 2 0 1 | * * 8 * * ... .xx ...&#x | 0 2 2 | 0 0 0 1 2 1 0 | * * * 8 * ... ..x4..x | 0 0 8 | 0 0 0 0 0 4 4 | * * * * 2
© 2004-2024 | top of page |