Acronym ...
Name thawro wedge
 
 ©
Circumradius ...
Lace city
in approx. ASCII-art
           o3x           
                         		(F=ff=x+f)
x3x     o3F   f3x     x3o
Dihedral angles
(at margins)
  • at {3} between oct and tricu:   arccos(-sqrt[9+3 sqrt(5)]/4) = 172.238756°
  • at {3} between peppy and tet-B:   arccos(-sqrt[9+3 sqrt(5)]/4) = 172.238756°
  • at {3} between tet-B and trip:   arccos(-sqrt[9+3 sqrt(5)]/4) = 172.238756°
  • at {3} between oct and squippy:   arccos[-(1+3 sqrt(5))/8] = 164.477512°
  • at {3} between tet-A and tet-B:   arccos[-(1+3 sqrt(5))/8] = 164.477512°
  • at {3} between tet-A and tricu:   arccos[-(1+3 sqrt(5))/8] = 164.477512°
  • at {4} between squippy and trip:   arccos[-sqrt(5/6)] = 155.905157°
  • at {4} between tricu and trip:   arccos[-sqrt(5/6)] = 155.905157°
  • at {3} between oct and peppy:   arccos[-sqrt(5/8)] = 142.238756°
  • at {3} between peppy and squippy:   arccos[-sqrt(5/8)] = 142.238756°
  • at {3} between oct and thawro:   arccos[sqrt(5/8)] = 37.761244°
  • at {3} between squippy and thawro:   arccos[sqrt(5/8)] = 37.761244°
  • at {5} between peppy and thawro:   36°
  • at {3} between tet-A and thawro:   arccos(sqrt[7+3 sqrt(5)]/4) = 22.238756°
  • at {3} between tet-B and thawro:   arccos[sqrt[7+3 sqrt(5)]/4) = 22.238756°
  • at {6} between thawro and tricu:   arccos(sqrt[7+3 sqrt(5)]/4) = 22.238756°
  • at {4} between thawro and trip:   arccos(sqrt[(3+sqrt(5))/6]) = 20.905157°
Face vector 21, 60, 60, 21
Confer
related segmentochora:
ike || id  
related CRFs:
line || bilbiro   {5} || pocuro  

Incidence matrix

{3} || thawro   → height = (sqrt(5)-1)/4 = 0.309017

3 * * * * | 2 2 1 2 2 0 0 0 0 0 0 0 0 | 1 2 2 2 1 2 2 2 2 1 0 0 0 0 0 0 0 | 1 1 2 2 1 2 1 0  at top o3x (of l.c.)
* 6 * * * | 0 1 0 0 0 1 1 1 1 0 0 0 0 | 0 1 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 | 1 0 1 0 1 1 0 1  at x3x (of l.c.)
* * 3 * * | 0 0 1 0 0 0 0 2 0 2 0 0 0 | 0 0 0 0 0 2 0 2 0 0 0 1 0 2 1 0 0 | 0 0 0 0 1 2 1 1  at o3F (of l.c.)
* * * 6 * | 0 0 0 1 0 0 0 0 1 1 1 1 0 | 0 0 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 | 0 0 1 1 0 1 1 1  at f3x (of l.c.)
* * * * 3 | 0 0 0 0 2 0 0 0 0 0 0 2 2 | 0 0 0 1 0 0 0 0 2 2 0 0 0 0 2 1 1 | 0 1 0 1 0 0 2 1  at x3o (of l.c.)
----------+---------------------------+-----------------------------------+----------------
2 0 0 0 0 | 3 * * * * * * * * * * * * | 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 1 1 1 0 0 0 0
1 1 0 0 0 | * 6 * * * * * * * * * * * | 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 | 1 0 1 0 1 1 0 0
1 0 1 0 0 | * * 3 * * * * * * * * * * | 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0 | 0 0 0 0 1 2 1 0
1 0 0 1 0 | * * * 6 * * * * * * * * * | 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 | 0 0 1 1 0 1 1 0
1 0 0 0 1 | * * * * 6 * * * * * * * * | 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 | 0 1 0 1 0 0 1 0
0 2 0 0 0 | * * * * * 3 * * * * * * * | 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 | 1 0 0 0 1 0 0 1  6-3
0 2 0 0 0 | * * * * * * 3 * * * * * * | 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 | 1 0 1 0 0 0 0 1  6-4
0 1 1 0 0 | * * * * * * * 6 * * * * * | 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 | 0 0 0 0 1 1 0 1
0 1 0 1 0 | * * * * * * * * 6 * * * * | 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 | 0 0 1 0 0 1 0 1
0 0 1 1 0 | * * * * * * * * * 6 * * * | 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 | 0 0 0 0 0 1 1 1
0 0 0 2 0 | * * * * * * * * * * 3 * * | 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 | 0 0 1 1 0 0 0 1
0 0 0 1 1 | * * * * * * * * * * * 6 * | 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 | 0 0 0 1 0 0 1 1
0 0 0 0 2 | * * * * * * * * * * * * 3 | 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 | 0 1 0 0 0 0 1 1
----------+---------------------------+-----------------------------------+----------------
3 0 0 0 0 | 3 0 0 0 0 0 0 0 0 0 0 0 0 | 1 * * * * * * * * * * * * * * * * | 1 1 0 0 0 0 0 0
2 2 0 0 0 | 1 2 0 0 0 0 1 0 0 0 0 0 0 | * 3 * * * * * * * * * * * * * * * | 1 0 1 0 0 0 0 0
2 0 0 2 0 | 1 0 0 2 0 0 0 0 0 0 1 0 0 | * * 3 * * * * * * * * * * * * * * | 0 0 1 1 0 0 0 0
2 0 0 0 1 | 1 0 0 0 2 0 0 0 0 0 0 0 0 | * * * 3 * * * * * * * * * * * * * | 0 1 0 1 0 0 0 0
1 2 0 0 0 | 0 2 0 0 0 1 0 0 0 0 0 0 0 | * * * * 3 * * * * * * * * * * * * | 1 0 0 0 1 0 0 0
1 1 1 0 0 | 0 1 1 0 0 0 0 1 0 0 0 0 0 | * * * * * 6 * * * * * * * * * * * | 0 0 0 0 1 1 0 0
1 1 0 1 0 | 0 1 0 1 0 0 0 0 1 0 0 0 0 | * * * * * * 6 * * * * * * * * * * | 0 0 1 0 0 1 0 0
1 0 1 1 0 | 0 0 1 1 0 0 0 0 0 1 0 0 0 | * * * * * * * 6 * * * * * * * * * | 0 0 0 0 0 1 1 0
1 0 0 1 1 | 0 0 0 1 1 0 0 0 0 0 0 1 0 | * * * * * * * * 6 * * * * * * * * | 0 0 0 1 0 0 1 0
1 0 0 0 2 | 0 0 0 0 2 0 0 0 0 0 0 0 1 | * * * * * * * * * 3 * * * * * * * | 0 1 0 0 0 0 1 0
0 6 0 0 0 | 0 0 0 0 0 3 3 0 0 0 0 0 0 | * * * * * * * * * * 1 * * * * * * | 1 0 0 0 0 0 0 1
0 2 1 0 0 | 0 0 0 0 0 1 0 2 0 0 0 0 0 | * * * * * * * * * * * 3 * * * * * | 0 0 0 0 1 0 0 1
0 2 0 2 0 | 0 0 0 0 0 0 1 0 2 0 1 0 0 | * * * * * * * * * * * * 3 * * * * | 0 0 1 0 0 0 0 1
0 1 1 1 0 | 0 0 0 0 0 0 0 1 1 1 0 0 0 | * * * * * * * * * * * * * 6 * * * | 0 0 0 0 0 1 0 1
0 0 1 2 2 | 0 0 0 0 0 0 0 0 0 2 0 2 1 | * * * * * * * * * * * * * * 3 * * | 0 0 0 0 0 0 1 1
0 0 0 2 1 | 0 0 0 0 0 0 0 0 0 0 1 2 0 | * * * * * * * * * * * * * * * 3 * | 0 0 0 1 0 0 0 1
0 0 0 0 3 | 0 0 0 0 0 0 0 0 0 0 0 0 3 | * * * * * * * * * * * * * * * * 1 | 0 1 0 0 0 0 0 1
----------+---------------------------+-----------------------------------+----------------
3 6 0 0 0 | 3 6 0 0 0 3 3 0 0 0 0 0 0 | 1 3 0 0 3 0 0 0 0 0 1 0 0 0 0 0 0 | 1 * * * * * * *  tricu
3 0 0 0 3 | 3 0 0 0 6 0 0 0 0 0 0 0 3 | 1 0 0 3 0 0 0 0 0 3 0 0 0 0 0 0 1 | * 1 * * * * * *  oct
2 2 0 2 0 | 1 2 0 2 0 0 1 0 2 0 1 0 0 | 0 1 1 0 0 0 2 0 0 0 0 0 1 0 0 0 0 | * * 3 * * * * *  trip
2 0 0 2 1 | 1 0 0 2 2 0 0 0 0 0 1 2 0 | 0 0 1 1 0 0 0 0 2 0 0 0 0 0 0 1 0 | * * * 3 * * * *  squippy
1 2 1 0 0 | 0 2 1 0 0 1 0 2 0 0 0 0 0 | 0 0 0 0 1 2 0 0 0 0 0 1 0 0 0 0 0 | * * * * 3 * * *  tet-A
1 1 1 1 0 | 0 1 1 1 0 0 0 1 1 1 0 0 0 | 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 | * * * * * 6 * *  tet-B
1 0 1 2 2 | 0 0 1 2 2 0 0 0 0 2 0 2 1 | 0 0 0 0 0 0 0 2 2 1 0 0 0 0 1 0 0 | * * * * * * 3 *  peppy
0 6 3 6 3 | 0 0 0 0 0 3 3 6 6 6 3 6 3 | 0 0 0 0 0 0 0 0 0 0 1 3 3 6 3 3 1 | * * * * * * * 1  thawro

© 2004-2024
top of page