Acronym | cytau tes |
Name |
cyclotetraaugmented tesseract, cyclotetradiminished icositetrachoron |
Circumradius | 1 |
Lace city in approx. ASCII-art |
x4o x4o o4q x4o x4o |
o4o x4o o4o x4o x4o o4o x4o o4o | |
Dihedral angles | |
Face vector | 20, 64, 68, 24 |
Confer |
|
This CRF polychoron can be obtained by augmenting a cycle of 4 cubes of tes with cubpies. Note, that neighbouring squippies then reconnect to octs.
It likewise can be obtained from ico by diminishing a cycle of 4 vertices.
Furthermore it is obtainable as the blend of 2 {4} || coes, belnded at the common co, but having the squares orthogonally aligned, i.e. as different diagonals of an encasing oct.
Incidence matrix according to Dynkin symbol
ox4qo ox4oo&#zx → all heights = 0 (tegum sum of q-{4} and gyro tes) o.4o. o.4o. | 4 * ♦ 8 0 0 | 4 8 0 0 | 4 2 0 (tips) .o4.o .o4.o | * 16 | 2 2 2 | 2 4 1 4 | 4 1 2 (base tes) ----------------+------+----------+------------+------- oo4oo oo4oo&#x | 1 1 | 32 * * | 1 2 0 0 | 2 1 0 .x .. .. .. | 0 2 | * 16 * | 1 0 1 2 | 2 0 2 .. .. .x .. | 0 2 | * * 16 | 0 2 0 2 | 2 1 1 ----------------+------+----------+------------+------- ox .. .. .. | 1 2 | 2 1 0 | 16 * * * | 2 0 0 .. .. ox .. | 1 2 | 2 0 1 | * 32 * * | 1 1 0 .x4.o .. .. | 0 4 | 0 4 0 | * * 4 * | 0 0 2 .x .. .x .. | 0 4 | 0 2 2 | * * * 16 | 1 0 1 ----------------+------+----------+------------+------- ox .. ox ..&#x ♦ 1 4 | 4 2 2 | 2 2 0 1 | 16 * * .. qo ox4oo&#zx ♦ 2 4 | 8 0 4 | 0 8 0 0 | * 4 * .x4.o .x .. ♦ 0 8 | 0 8 4 | 0 0 2 4 | * * 4
qoo ooq xox4oqo&#zx → height = 0 (tegum sum of q-{4} with 2 gyrated, lacing-ortho (x,x,q)-cubes) o.. o.. o..4o.. & | 16 * | 2 2 2 | 1 2 4 4 | 2 1 4 .o. .o. .o.4.o. | * 4 ♦ 0 8 0 | 0 4 0 8 | 0 2 4 ----------------------+------+----------+------------+------- ... ... x.. ... & | 2 0 | 16 * * | 1 1 2 0 | 2 0 2 oo. oo. oo.4oo.&#x & | 1 1 | * 32 * | 0 1 0 2 | 0 1 2 o.o o.o o.o4o.o&#x | 2 0 | * * 16 | 0 0 2 2 | 1 1 2 ----------------------+------+----------+------------+------- ... ... x..4o.. & | 4 0 | 4 0 0 | 4 * * * | 2 0 0 ... ... xo. ...&#x & | 2 1 | 1 2 0 | * 16 * * | 0 0 2 ... ... x.x ...&#x | 4 0 | 2 0 2 | * * 16 * | 1 0 1 ooo ooo ooo4ooo&#x | 2 1 | 0 2 1 | * * * 32 | 0 1 1 ----------------------+------+----------+------------+------- ... ... x.x4o.o&#x ♦ 8 0 | 8 0 4 | 2 0 4 0 | 4 * * qoo ooq ... oqo&#zx ♦ 4 2 | 0 8 4 | 0 0 0 8 | * 4 * ... ... xox ...&#x ♦ 4 1 | 2 4 2 | 0 2 1 2 | * * 16
xox xox4oqo&#xt → both heights = 1/2 (cube || pseudo gyro q-{4} || cube) o.. o..4o.. | 8 * * | 1 2 2 1 0 0 0 | 2 1 2 2 2 2 0 0 0 0 | 1 2 1 1 2 0 0 .o. .o.4.o. | * 4 * ♦ 0 0 4 0 4 0 0 | 0 0 2 2 0 4 2 2 0 0 | 0 1 0 2 2 1 0 ..o ..o4..o | * * 8 | 0 0 0 1 2 1 2 | 0 0 0 0 2 2 2 2 2 1 | 0 0 1 1 2 2 1 ----------------+-------+-----------------+----------------------+-------------- x.. ... ... | 2 0 0 | 4 * * * * * * | 2 0 2 0 0 0 0 0 0 0 | 1 2 0 1 0 0 0 ... x.. ... | 2 0 0 | * 8 * * * * * | 1 1 0 1 1 0 0 0 0 0 | 1 1 1 0 1 0 0 oo. oo.4oo.&#x | 1 1 0 | * * 16 * * * * | 0 0 1 1 0 1 0 0 0 0 | 0 1 0 1 1 0 0 o.o o.o4o.o&#x | 1 0 1 | * * * 8 * * * | 0 0 0 0 2 2 0 0 0 0 | 0 0 1 1 2 0 0 .oo .oo4.oo&#x | 0 1 1 | * * * * 16 * * | 0 0 0 0 0 1 1 1 0 0 | 0 0 0 1 1 1 0 ..x ... ... | 0 0 2 | * * * * * 4 * | 0 0 0 0 0 0 2 0 2 0 | 0 0 0 1 0 2 1 ... ..x ... | 0 0 2 | * * * * * * 8 | 0 0 0 0 1 0 0 1 1 1 | 0 0 1 0 1 1 1 ----------------+-------+-----------------+----------------------+-------------- x.. x.. ... | 4 0 0 | 2 2 0 0 0 0 0 | 4 * * * * * * * * * | 1 1 0 0 0 0 0 ... x..4o.. | 4 0 0 | 0 4 0 0 0 0 0 | * 2 * * * * * * * * | 1 0 1 0 0 0 0 xo. ... ...&#x | 2 1 0 | 1 0 2 0 0 0 0 | * * 8 * * * * * * * | 0 1 0 1 0 0 0 ... xo. ...&#x | 2 1 0 | 0 1 2 0 0 0 0 | * * * 8 * * * * * * | 0 1 0 0 1 0 0 ... x.x ...&#x | 2 0 2 | 0 1 0 2 0 0 1 | * * * * 8 * * * * * | 0 0 1 0 1 0 0 ooo ooo4ooo&#x | 1 1 1 | 0 0 1 1 1 0 0 | * * * * * 16 * * * * | 0 0 0 1 1 0 0 .ox ... ...&#x | 0 1 2 | 0 0 0 0 2 1 0 | * * * * * * 8 * * * | 0 0 0 1 0 1 0 ... .ox ...&#x | 0 1 2 | 0 0 0 0 2 0 1 | * * * * * * * 8 * * | 0 0 0 0 1 1 0 ..x ..x ... | 0 0 4 | 0 0 0 0 0 2 2 | * * * * * * * * 4 * | 0 0 0 0 0 1 1 ... ..x4..o | 0 0 4 | 0 0 0 0 0 0 4 | * * * * * * * * * 2 | 0 0 1 0 0 0 1 ----------------+-------+-----------------+----------------------+-------------- x.. x..4o.. ♦ 8 0 0 | 4 8 0 0 0 0 0 | 4 2 0 0 0 0 0 0 0 0 | 1 * * * * * * xo. xo. ...&#x ♦ 4 1 0 | 2 2 4 0 0 0 0 | 1 0 2 2 0 0 0 0 0 0 | * 4 * * * * * ... x.x4o.o&#x ♦ 4 0 4 | 0 4 0 4 0 0 4 | 0 1 0 0 4 0 0 0 0 1 | * * 2 * * * * xox ... oqo&#xt ♦ 2 2 2 | 1 0 4 2 4 1 0 | 0 0 2 0 0 4 2 0 0 0 | * * * 4 * * * ... xox ...&#x ♦ 2 1 2 | 0 1 2 2 2 0 1 | 0 0 0 1 1 2 0 1 0 0 | * * * * 8 * * .ox .ox ...&#x ♦ 0 1 4 | 0 0 0 0 4 2 2 | 0 0 0 0 0 0 2 2 1 0 | * * * * * 4 * ..x ..x4..o ♦ 0 0 8 | 0 0 0 0 0 4 8 | 0 0 0 0 0 0 0 0 4 2 | * * * * * * 1
(qo)q(qo) (oo)o(oo)4(ox)x(ox)&#xt → both heights 1/sqrt(2) = 0.707107 (oct || pseudo (q,x)-cube || oct) (o.).(..) (o.).(..)4(o.).(..) & | 4 * * | 4 4 0 0 0 | 4 4 4 0 0 | 1 4 1 0 (.o).(..) (.o).(..)4(.o).(..) & | * 8 * | 2 0 2 2 0 | 4 0 2 4 1 | 1 4 0 2 (..)o(..) (..)o(..)4(..)o(..) | * * 8 | 0 2 0 2 2 | 0 4 2 4 1 | 0 4 1 2 ------------------------------------+-------+--------------+---------------+--------- (oo).(..) (oo).(..)4(oo).(..)&#x & | 1 1 0 | 16 * * * * | 2 0 1 0 0 | 1 2 0 0 (o.)o(..) (o.)o(..)4(o.)o(..)&#x & | 1 0 1 | * 16 * * * | 0 2 1 0 0 | 0 2 1 0 (..).(..) (..).(..) (.x).(..) & | 0 2 0 | * * 8 * * | 2 0 0 2 0 | 1 2 0 1 (.o)o(..) (.o)o(..)4(.o)o(..)&#x & | 0 1 1 | * * * 16 * | 0 0 1 2 1 | 0 2 0 2 (..).(..) (..).(..) (..)x(..) | 0 0 2 | * * * * 8 | 0 2 0 2 0 | 0 2 1 1 ------------------------------------+-------+--------------+---------------+--------- (..).(..) (..).(..) (ox).(..)&#x & | 1 2 0 | 2 0 1 0 0 | 16 * * * * | 1 1 0 0 (..).(..) (..).(..) (o.)x(..)&#x & | 1 0 2 | 0 2 0 0 1 | * 16 * * * | 0 1 1 0 (oo)o(..) (oo)o(..)4(oo)o(..)&#x & | 1 1 1 | 1 1 0 1 0 | * * 16 * * | 0 2 0 0 (..).(..) (..).(..) (.x)x(..)&#x & | 0 2 2 | 0 0 1 2 1 | * * * 16 * | 0 1 0 1 (.o)q(.o) (..).(..) (..).(..)&#xt | 0 2 2 | 0 0 0 4 0 | * * * * 4 | 0 0 0 2 ------------------------------------+-------+--------------+---------------+--------- (qo).(..) (oo).(..)4(ox).(..)&#x & ♦ 2 4 0 | 8 0 4 0 0 | 8 0 0 0 0 | 2 * * * (..).(..) (..).(..) (ox)x(..)&#x & ♦ 1 2 2 | 2 2 1 2 1 | 1 1 2 1 0 | * 16 * * (..).(..) (o.)o(o.)4(o.)x(o.)&#xt ♦ 2 0 4 | 0 8 0 0 4 | 0 8 0 0 0 | * * 2 * (.o)q(.o) (..).(..) (.x)x(.x)&#xt ♦ 0 4 4 | 0 0 2 8 2 | 0 0 0 4 2 | * * * 4
© 2004-2025 | top of page |