Acronym pocsric   (alt.: phixic)
Name partially octa-contracted small rhombated icositetrachoron,
partially hexadeca-expanded icositetrachoron,
octa-augmented truncated tesseract
 
 ©
Circumradius ...
Coordinates
  1. ((1+sqrt(2))/2, (1+sqrt(2))/2, (1+sqrt(2))/2, 1/2)   & all permutations, all changes of sign
    (vertex inscribed tat)
  2. ((2+sqrt(2))/2, sqrt(2)/2, sqrt(2)/2, 0)                   & all permutations, all changes of sign
    (vertex inscribed (q,x)-rico)
Dihedral angles
Face vector 160, 512, 464, 112
Confer
uniform relative:
srico   ico   tat  
related CRFs:
poxic  
related segmentochora:
co || tic  
general polytopal classes:
partial Stott expansions  
External
links
quickfur  

This CRF polychoron can be obtained from srico by partial Stott contracting only 8 cos. (Note that srico is just the convex hull of those 24 accordingly placed coes. Here 8 of those are selected in a hexadecachoral relative subsymmetry. The 16 other coes then get contracted in turn into tets. Also all 24 sircoes become squobcues. And 32 of the former 96 trips, in fact those which connected the now contracted coes, just become reduced to edges.)

Conversely it can be obtained by a similar partial Stott expansion from poxic (which in turn is derived by such a expansion from ico).

Finally it can be obtained as the augmentation of tat by 8 co || tic segmentochora, replacing thus all the tics and the new squacues thereby unite pairwise into squobcues.


Incidence matrix according to Dynkin symbol

qo3oo3xx4ox&#zx   → height = 0
(tegum sum of (q,x)-rico and tat)

o.3o.3o.4o.     | 96  * |   4   2  0  0 |  2  2   4  1  0 | 1  2  2  0
.o3.o3.o4.o     |  * 64 |   0   3  3  1 |  0  0   6  3  3 | 0  3  3  1
----------------+-------+---------------+-----------------+-----------
.. .. x. ..     |  2  0 | 192   *  *  * |  1  1   1  0  0 | 1  1  1  0
oo3oo3oo4oo&#x  |  1  1 |   * 192  *  * |  0  0   2  1  0 | 0  2  1  0
.. .. .x ..     |  0  2 |   *   * 96  * |  0  0   2  0  2 | 0  1  2  1
.. .. .. .x     |  0  2 |   *   *  * 32 |  0  0   0  3  0 | 0  3  0  0
----------------+-------+---------------+-----------------+-----------
.. o.3x. ..     |  3  0 |   3   0  0  0 | 64  *   *  *  * | 1  0  1  0
.. .. x.4o.     |  4  0 |   4   0  0  0 |  * 48   *  *  * | 1  1  0  0
.. .. xx ..&#x  |  2  2 |   1   2  1  0 |  *  * 192  *  * | 0  1  1  0
.. .. .. ox&#x  |  1  2 |   0   2  0  1 |  *  *   * 96  * | 0  2  0  0
.. .o3.x ..     |  0  3 |   0   0  3  0 |  *  *   *  * 64 | 0  0  1  1
----------------+-------+---------------+-----------------+-----------
.. o.3x.4o.      12  0 |  24   0  0  0 |  8  6   0  0  0 | 8  *  *  *
qo .. xx4ox&#zx   8  8 |   8  16  4  4 |  0  2   8  8  0 | * 24  *  *
.. oo3xx ..&#x    3  3 |   3   3  3  0 |  1  0   3  0  1 | *  * 64  *
.o3.o3.x ..       0  4 |   0   0  6  0 |  0  0   0  0  4 | *  *  * 16

wxx3ooo3xwx *b3ooq&#zx   → height = 0
(tegum sum of 2 mutually gyrated (w,x)-rits and (x,x,q)-rico)

o..3o..3o.. *b3o..     | 32  *  * |  3  1  3  0  0  0  0 |  3  6  3  0  0  0  0  0 | 1  3  3 0  0 0
.o.3.o.3.o. *b3.o.     |  * 32  * |  0  1  0  3  3  0  0 |  0  0  3  3  6  0  0  0 | 0  0  3 1  3 0
..o3..o3..o *b3..o     |  *  * 96 |  0  0  1  0  1  2  2 |  0  2  1  0  2  1  2  1 | 0  1  2 0  1 1
-----------------------+----------+----------------------+-------------------------+---------------
... ... x..    ...     |  2  0  0 | 48  *  *  *  *  *  * |  2  2  0  0  0  0  0  0 | 1  2  1 0  0 0
oo.3oo.3oo. *b3oo.&#x  |  1  1  0 |  * 32  *  *  *  *  * |  0  0  3  0  0  0  0  0 | 0  0  3 0  0 0
o.o3o.o3o.o *b3o.o&#x  |  1  0  1 |  *  * 96  *  *  *  * |  0  2  1  0  0  0  0  0 | 0  1  2 0  0 0
.x. ... ...    ...     |  0  2  0 |  *  *  * 48  *  *  * |  0  0  0  2  2  0  0  0 | 0  0  1 1  2 0
.oo3.oo3.oo *b3.oo&#x  |  0  1  1 |  *  *  *  * 96  *  * |  0  0  1  0  2  0  0  0 | 0  0  2 0  1 0
..x ... ...    ...     |  0  0  2 |  *  *  *  *  * 96  * |  0  0  0  0  1  1  1  0 | 0  0  1 0  1 1
... ... ..x    ...     |  0  0  2 |  *  *  *  *  *  * 96 |  0  1  0  0  0  0  1  1 | 0  1  1 0  0 1
-----------------------+----------+----------------------+-------------------------+---------------
... o..3x..    ...     |  3  0  0 |  3  0  0  0  0  0  0 | 32  *  *  *  *  *  *  * | 1  1  0 0  0 0
... ... x.x    ...&#x  |  2  0  2 |  1  0  2  0  0  0  1 |  * 96  *  *  *  *  *  * | 0  1  1 0  0 0
ooo3ooo3ooo *b3ooo&#x  |  1  1  1 |  0  1  1  0  1  0  0 |  *  * 96  *  *  *  *  * | 0  0  2 0  0 0
.x.3.o. ...    ...     |  0  3  0 |  0  0  0  3  0  0  0 |  *  *  * 32  *  *  *  * | 0  0  0 1  1 0
.xx ... ...    ...&#x  |  0  2  2 |  0  0  0  1  2  1  0 |  *  *  *  * 96  *  *  * | 0  0  1 0  1 0
..x3..o ...    ...     |  0  0  3 |  0  0  0  0  0  3  0 |  *  *  *  *  * 32  *  * | 0  0  0 0  1 1
..x ... ..x    ...     |  0  0  4 |  0  0  0  0  0  2  2 |  *  *  *  *  *  * 48  * | 0  0  1 0  0 1
... ..o3..x    ...     |  0  0  3 |  0  0  0  0  0  0  3 |  *  *  *  *  *  *  * 32 | 0  1  0 0  0 1
-----------------------+----------+----------------------+-------------------------+---------------
... o..3x.. *b3o..       4  0  0 |  6  0  0  0  0  0  0 |  4  0  0  0  0  0  0  0 | 8  *  * *  * *
... o.o3x.x    ...       3  0  3 |  3  0  3  0  0  0  3 |  1  3  0  0  0  0  0  1 | * 32  * *  * *
wxx ... xwx    ooq&#zx   4  4  8 |  2  4  8  2  8  4  4 |  0  4  8  0  4  0  2  0 | *  * 24 *  * *
.x.3.o. ... *b3.o.       0  4  0 |  0  0  0  6  0  0  0 |  0  0  0  4  0  0  0  0 | *  *  * 8  * *
.xx3.oo ...    ...&#x    0  3  3 |  0  0  0  3  3  3  0 |  0  0  0  1  3  1  0  0 | *  *  * * 32 *
..x3..o3..x    ...       0  0 12 |  0  0  0  0  0 12 12 |  0  0  0  0  0  4  6  4 | *  *  * *  * 8

© 2004-2025
top of page