Acronym tutatoe gybcu
Name tutatoe gyrobicupola
Lace city
in approx. ASCII-art
    x3x  o3u  o3x 
                  
x3x  u3x  x3u  x3x
                  
 x3o  u3o  x3x    
Dihedral angles
  • at {4} between hip and trip:   arccos(-2/3) = 131.810315°
  • at {4} between trip and trip:   arccos(-2/3) = 131.810315°
  • at {6} between hip and tricu:   arccos[-sqrt(3/8)] = 127.761244°
  • at {6} between hip and tut:   arccos[-sqrt(3/8)] = 127.761244°
  • at {3} between tricu and trip:   arccos[-sqrt(3/8)] = 127.761244°
  • at {4} between hip and tricu:   arccos[-1/sqrt(6)] = 114.094843°
  • at {3} between tricu and tut:   arccos(-1/4) = 104.477512°
Face vector 48, 120, 102, 30
Confer
uniform relative:
spid  
related segmentochora:
tutatoe  
related CRFs:
tutatobcu  
general polytopal classes:
expanded kaleido-facetings   bistratic lace towers  

The relation to spid runs as follows: spid in tetrahedral-antiprismatic subsymmetry can be given as xxo3ooo3oxx&#xt. Then a partial Stott expansion wrt. the second node produces this polychoron.


Incidence matrix according to Dynkin symbol

xxo3xxx3oxx&#xt   → both heights = sqrt(5/8) = 0.790569
(tut || pseudo toe || inv tut)

o..3o..3o..    & | 24  * |  1  2  2  0  0 | 2 1  2  2  1 0 0 | 1 2  1 1
.o.3.o.3.o.      |  * 24 |  0  0  2  2  1 | 0 0  2  2  2 2 1 | 0 2  2 2
-----------------+-------+----------------+------------------+---------
x.. ... ...    & |  2  0 | 12  *  *  *  * | 2 0  2  0  0 0 0 | 1 2  1 0
... x.. ...    & |  2  0 |  * 24  *  *  * | 1 1  0  1  0 0 0 | 1 1  0 1
oo.3oo.3oo.&#x & |  1  1 |  *  * 48  *  * | 0 0  1  1  1 0 0 | 0 1  1 1
.x. ... ...    & |  0  2 |  *  *  * 24  * | 0 0  1  0  1 1 1 | 0 1  2 1
... .x. ...      |  0  2 |  *  *  *  * 12 | 0 0  0  2  0 2 0 | 0 2  0 2
-----------------+-------+----------------+------------------+---------
x..3x.. ...    & |  6  0 |  3  3  0  0  0 | 8 *  *  *  * * * | 1 1  0 0
... x..3o..    & |  3  0 |  0  3  0  0  0 | * 8  *  *  * * * | 1 0  0 1
xx. ... ...&#x & |  2  2 |  1  0  2  1  0 | * * 24  *  * * * | 0 1  1 0
... xx. ...&#x & |  2  2 |  0  1  2  0  1 | * *  * 24  * * * | 0 1  0 1
... ... ox.&#x & |  1  2 |  0  0  2  1  0 | * *  *  * 24 * * | 0 0  1 1
.x.3.x. ...    & |  0  6 |  0  0  0  3  3 | * *  *  *  * 8 * | 0 1  0 1
.x. ... .x.      |  0  4 |  0  0  0  4  0 | * *  *  *  * * 6 | 0 0  2 0
-----------------+-------+----------------+------------------+---------
x..3x..3o..    &  12  0 |  6 12  0  0  0 | 4 4  0  0  0 0 0 | 2 *  * *
xx.3xx. ...&#x &   6  6 |  3  3  6  3  3 | 1 0  3  3  0 1 0 | * 8  * *
xx. ... ox.&#x &   2  4 |  1  0  4  4  0 | 0 0  2  0  2 0 1 | * * 12 *
... xx.3ox.&#x &   3  6 |  0  3  6  3  3 | 0 1  0  3  3 1 0 | * *  * 8

© 2004-2024
top of page