Acronym ... Name oFFxx3xxoof3fooxx3xxFFo&#zx Confer uniform relative: ex   related CRFs: xxfoF3oxxFx3xFxxo3Fofxx&#zx   general polytopal classes: expanded kaleido-facetings

The relation to ex runs as follows: ex in pentic subsymmetry can be given as xffoo3oxoof3fooxo3ooffx&#zx. That will be transformed into (-x)ffoo3xxoof3fooxo3ooffx&#zx. Then into (-x)ffoo3xxoof3fooxx3ooff(-x)&#zx. Finally a Stott expansion wrt. the first and fourth node produces this polychoron.

The non-existing lacings calculate to vertex distances according to f=(1+sqrt(5))/2.

Incidence matrix according to Dynkin symbol

```oFFxx3xxoof3fooxx3xxFFo&#zx   → all heights = 0 – except those of the not existing lacing(1,2), lacing(1,3), lacing(2,4), lacing(3,5), and lacing(4,5)

o....3o....3o....3o....     & | 120   *  * |   2  1   2   2   0   0   0 |  1  2   1   2   3  0  0  0   0   0 |  1  1  1  3  0  0
.o...3.o...3.o...3.o...     & |   * 120  * |   0  0   2   0   2   2   1 |  0  0   2   1   0  1  2  1   2   2 |  0  1  0  3  1  1
..o..3..o..3..o..3..o..       |   *   * 20 |   0  0   0   0   0   0   6 |  0  0   0   0   0  0  0  0   6   6 |  0  0  0  6  0  2
------------------------------+------------+----------------------------+------------------------------------+------------------
..... x.... ..... .....     & |   2   0  0 | 120  *   *   *   *   *   * |  1  1   0   1   0  0  0  0   0   0 |  1  1  0  1  0  0
..... ..... ..... x....     & |   2   0  0 |   * 60   *   *   *   *   * |  0  2   0   0   2  0  0  0   0   0 |  1  0  1  2  0  0
o..o.3o..o.3o..o.3o..o.&#x  & |   1   1  0 |   *  * 240   *   *   *   * |  0  0   1   1   0  0  0  0   0   1 |  0  1  0  2  0  0
o...o3o...o3o...o3o...o&#x    |   2   0  0 |   *  *   * 120   *   *   * |  0  0   0   0   2  0  0  0   0   1 |  0  0  1  2  0  0
..... .x... ..... .....     & |   0   2  0 |   *  *   *   * 120   *   * |  0  0   0   0   0  1  1  0   1   0 |  0  0  0  1  1  1
..... ..... ..... .x...     & |   0   2  0 |   *  *   *   *   * 120   * |  0  0   1   0   0  0  1  1   0   0 |  0  1  0  1  1  0
.oo..3.oo..3.oo..3.oo..&#x  & |   0   1  1 |   *  *   *   *   *   * 120 |  0  0   0   0   0  0  0  0   2   2 |  0  0  0  3  0  1
------------------------------+------------+----------------------------+------------------------------------+------------------
o....3x.... ..... .....     & |   3   0  0 |   3  0   0   0   0   0   0 | 40  *   *   *   *  *  *  *   *   * |  1  1  0  0  0  0
..... x.... ..... x....     & |   4   0  0 |   2  2   0   0   0   0   0 |  * 60   *   *   *  *  *  *   *   * |  1  0  0  1  0  0
o..x. ..... ..... .....&#x  & |   1   2  0 |   0  0   2   0   0   1   0 |  *  * 120   *   *  *  *  *   *   * |  0  1  0  1  0  0
..... x..o. ..... .....&#x  & |   2   1  0 |   1  0   2   0   0   0   0 |  *  *   * 120   *  *  *  *   *   * |  0  1  0  1  0  0
o...x ..... ..... .....&#x  & |   3   0  0 |   0  1   0   2   0   0   0 |  *  *   *   * 120  *  *  *   *   * |  0  0  1  1  0  0
..... .x...3.o... .....     & |   0   3  0 |   0  0   0   0   3   0   0 |  *  *   *   *   * 40  *  *   *   * |  0  0  0  0  1  1
..... .x... ..... .x...     & |   0   4  0 |   0  0   0   0   2   2   0 |  *  *   *   *   *  * 60  *   *   * |  0  0  0  1  1  0
..... ..... .o...3.x...     & |   0   3  0 |   0  0   0   0   0   3   0 |  *  *   *   *   *  *  * 40   *   * |  0  1  0  0  1  0
..... .xo.. ..... .....&#x  & |   0   2  1 |   0  0   0   0   1   0   2 |  *  *   *   *   *  *  *  * 120   * |  0  0  0  1  0  1
ooooo3ooooo3ooooo3ooooo&#x    |   2   2  1 |   0  0   2   1   0   0   2 |  *  *   *   *   *  *  *  *   * 120 |  0  0  0  2  0  0
------------------------------+------------+----------------------------+------------------------------------+------------------
o....3x.... ..... x....     & ♦   6   0  0 |   6  3   0   0   0   0   0 |  2  3   0   0   0  0  0  0   0   0 | 20  *  *  *  *  *
o..x.3x..o. ..... .....&#x  & ♦   3   3  0 |   3  0   6   0   0   3   0 |  1  0   3   3   0  0  0  1   0   0 |  * 40  *  *  *  *
o...x ..... ..... x...o&#x    ♦   4   0  0 |   0  2   0   4   0   0   0 |  0  0   0   0   4  0  0  0   0   0 |  *  * 30  *  *  *
oFFxx ..... fooxx .....&#zx & ♦   6   6  2 |   2  2   8   4   2   2   6 |  0  1   2   2   2  0  1  0   2   4 |  *  *  * 60  *  * (tower: 43125)
..... .x...3.o...3.x...     & ♦   0  12  0 |   0  0   0   0  12  12   0 |  0  0   0   0   0  4  6  4   0   0 |  *  *  *  * 10  *
..... .xo..3.oo.. .....&#x  & ♦   0   3  1 |   0  0   0   0   3   0   3 |  0  0   0   0   0  1  0  0   3   0 |  *  *  *  *  * 40
```