Acronym | ... |
Name | Fxo xfo3oox5xxx&#zxt |
Face vector | 300, 840, 828, 258 |
Confer |
|
The relation to ex runs as follows: ex in axial icosahedral subsymmetry can be given as VFfxo2oxofo3oooox5ooxoo&#zx = oxofofoxo3ooooxoooo5ooxoooxoo&#xt (F = ff = f+x, V = uf = f+f). That will be transformed into VFfxo2oxofo3oofox5oo(-x)oo&#zx. Then a Stott expansion wrt. the third node produces oxofofoxo3oofoxofoo5xxoxxxoxx. This polychoron then will be that diminishing therefrom, which deletes both the first and third layer from either end each.
Incidence matrix according to Dynkin symbol
xfofx3ooxoo5xxxxx&#xt → height(1,2) = height(4,5) = (1+sqrt(5))/4 = 0.809017 height(2,3) = height(3,4) = 1/2 (srid || pseudo (f,x)-srid || pseudo tid || pseudo (f,x)-srid || srid) o....3o....5o.... & | 120 * * | 2 2 1 0 0 0 0 0 | 1 2 1 2 2 0 0 0 0 0 0 | 1 1 2 1 0 0 0 .o...3.o...5.o... & | * 120 * | 0 0 1 2 2 1 0 0 | 0 0 0 2 2 1 1 2 2 2 0 | 0 1 2 1 1 2 1 ..o..3..o..5..o.. | * * 60 | 0 0 0 0 4 0 2 1 | 0 0 0 2 0 0 4 4 2 0 1 | 0 2 2 0 2 2 0 ------------------------+------------+------------------------------+---------------------------------------+-------------------- x.... ..... ..... & | 2 0 0 | 120 * * * * * * * | 1 1 0 1 0 0 0 0 0 0 0 | 1 1 1 0 0 0 0 ..... ..... x.... & | 2 0 0 | * 120 * * * * * * | 0 1 1 0 1 0 0 0 0 0 0 | 1 0 1 1 0 0 0 oo...3oo...5oo...&#x & | 1 1 0 | * * 120 * * * * * | 0 0 0 2 2 0 0 0 0 0 0 | 0 1 2 1 0 0 0 ..... ..... .x...&#x & | 0 2 0 | * * * 120 * * * * | 0 0 0 0 1 1 0 1 0 1 0 | 0 0 1 1 0 1 1 .oo..3.oo..5.oo..&#x & | 0 1 1 | * * * * 240 * * * | 0 0 0 1 0 0 1 1 1 0 0 | 0 1 1 0 1 1 0 .o.o.3.o.o.5.o.o.&#x | 0 2 0 | * * * * * 60 * * | 0 0 0 0 0 0 0 0 2 2 0 | 0 0 0 0 1 2 1 ..... ..x.. ..... | 0 0 2 | * * * * * * 60 * | 0 0 0 0 0 0 2 0 0 0 1 | 0 2 0 0 1 0 0 ..... ..... ..x.. | 0 0 2 | * * * * * * * 30 | 0 0 0 0 0 0 0 4 0 0 0 | 0 0 2 0 0 2 0 ------------------------+------------+------------------------------+---------------------------------------+-------------------- x....3o.... ..... & | 3 0 0 | 3 0 0 0 0 0 0 0 | 40 * * * * * * * * * * | 1 1 0 0 0 0 0 x.... ..... x.... & | 4 0 0 | 2 2 0 0 0 0 0 0 | * 60 * * * * * * * * * | 1 0 1 0 0 0 0 ..... o....5x.... & | 5 0 0 | 0 5 0 0 0 0 0 0 | * * 24 * * * * * * * * | 1 0 0 1 0 0 0 xfo.. ..... .....&#xt & | 2 2 1 | 1 0 2 0 2 0 0 0 | * * * 120 * * * * * * * | 0 1 1 0 0 0 0 ..... ..... xx...&#x & | 2 2 0 | 0 1 2 1 0 0 0 0 | * * * * 120 * * * * * * | 0 0 1 1 0 0 0 ..... .o...5.x... & | 0 5 0 | 0 0 0 5 0 0 0 0 | * * * * * 24 * * * * * | 0 0 0 1 0 0 1 ..... .ox.. .....&#x & | 0 1 2 | 0 0 0 0 2 0 1 0 | * * * * * * 120 * * * * | 0 1 0 0 1 0 0 ..... ..... .xx..&#x & | 0 2 2 | 0 0 0 1 2 0 0 1 | * * * * * * * 120 * * * | 0 0 1 0 0 1 0 .ooo.3.ooo.5.ooo.&#x | 0 2 1 | 0 0 0 0 2 1 0 0 | * * * * * * * * 120 * * | 0 0 0 0 1 1 0 ..... ..... .x.x.&#x | 0 4 0 | 0 0 0 2 0 2 0 0 | * * * * * * * * * 60 * | 0 0 0 0 0 1 1 ..o..3..x.. ..... | 0 0 3 | 0 0 0 0 0 0 3 0 | * * * * * * * * * * 20 | 0 2 0 0 0 0 0 ------------------------+------------+------------------------------+---------------------------------------+-------------------- x....3o....5x.... & ♦ 60 0 0 | 60 60 0 0 0 0 0 0 | 20 30 12 0 0 0 0 0 0 0 0 | 2 * * * * * * xfo..3oox.. .....&#xt & ♦ 3 3 3 | 3 0 3 0 6 0 3 0 | 1 0 0 3 0 0 3 0 0 0 1 | * 40 * * * * * xfo.. ..... xxx..&#xt & ♦ 4 4 2 | 2 2 4 2 4 0 0 1 | 0 1 0 2 2 0 0 2 0 0 0 | * * 60 * * * * ..... oo...5xx...&#x & ♦ 5 5 0 | 0 5 5 5 0 0 0 0 | 0 0 1 0 5 1 0 0 0 0 0 | * * * 24 * * * ..... .oxo. .....&#x ♦ 0 2 2 | 0 0 0 0 4 1 1 0 | 0 0 0 0 0 0 2 0 2 0 0 | * * * * 60 * * ..... ..... .xxx.&#x ♦ 0 4 2 | 0 0 0 2 4 2 0 1 | 0 0 0 0 0 0 0 2 2 1 0 | * * * * * 60 * ..... .o.o.5.x.x.&#x ♦ 0 10 0 | 0 0 0 10 0 5 0 0 | 0 0 0 0 0 2 0 0 0 5 0 | * * * * * * 12
or Fxo xfo3oox5xxx&#zxt → all existing heights = 0 o.. o..3o..5o.. | 120 * * | 2 2 1 0 0 0 0 0 | 1 2 1 2 2 0 0 0 0 0 0 | 1 1 2 1 0 0 0 .o. .o.3.o.5.o. | * 120 * | 0 0 1 1 2 2 0 0 | 0 0 0 2 2 2 1 2 1 2 0 | 0 1 2 1 1 1 2 ..o ..o3..o5..o | * * 60 | 0 0 0 0 0 4 2 1 | 0 0 0 2 0 0 0 2 4 4 1 | 0 2 2 0 0 2 2 --------------------+------------+------------------------------+---------------------------------------+-------------------- ... x.. ... ... | 2 0 0 | 120 * * * * * * * | 1 1 0 1 0 0 0 0 0 0 0 | 1 1 1 0 0 0 0 ... ... ... x.. | 2 0 0 | * 120 * * * * * * | 0 1 1 0 1 0 0 0 0 0 0 | 1 0 1 1 0 0 0 oo. oo.3oo.5oo.&#x | 1 1 0 | * * 120 * * * * * | 0 0 0 2 2 0 0 0 0 0 0 | 0 1 2 1 0 0 0 .x. ... ... ... | 0 2 0 | * * * 60 * * * * | 0 0 0 0 0 2 0 2 0 0 0 | 0 0 0 0 1 1 2 ... ... ... .x. | 0 2 0 | * * * * 120 * * * | 0 0 0 0 1 1 1 0 0 1 0 | 0 0 1 1 1 0 1 .oo .oo3.oo5.oo&#x | 0 1 1 | * * * * * 240 * * | 0 0 0 1 0 0 0 1 1 1 0 | 0 1 1 0 0 1 1 ... ... ..x ... | 0 0 2 | * * * * * * 60 * | 0 0 0 0 0 0 0 0 2 0 1 | 0 2 0 0 0 1 0 ... ... ... ..x | 0 0 2 | * * * * * * * 30 | 0 0 0 0 0 0 0 0 0 4 0 | 0 0 2 0 0 0 2 --------------------+------------+------------------------------+---------------------------------------+-------------------- ... x..3o.. ... | 3 0 0 | 3 0 0 0 0 0 0 0 | 40 * * * * * * * * * * | 1 1 0 0 0 0 0 ... x.. ... x.. | 4 0 0 | 2 2 0 0 0 0 0 0 | * 60 * * * * * * * * * | 1 0 1 0 0 0 0 ... ... o..5x.. | 5 0 0 | 0 5 0 0 0 0 0 0 | * * 24 * * * * * * * * | 1 0 0 1 0 0 0 ... xfo ... ...&#xt | 2 2 1 | 1 0 2 0 0 2 0 0 | * * * 120 * * * * * * * | 0 1 1 0 0 0 0 ... ... ... xx.&#x | 2 2 0 | 0 1 2 0 1 0 0 0 | * * * * 120 * * * * * * | 0 0 1 1 0 0 0 .x. ... ... .x. | 0 4 0 | 0 0 0 2 2 0 0 0 | * * * * * 60 * * * * * | 0 0 0 0 1 0 1 ... ... .o.5.x. | 0 5 0 | 0 0 0 0 5 0 0 0 | * * * * * * 24 * * * * | 0 0 0 1 1 0 0 .xo ... ... ...&#x | 0 2 1 | 0 0 0 1 0 2 0 0 | * * * * * * * 120 * * * | 0 0 0 0 0 1 1 ... ... .ox ...&#x | 0 1 2 | 0 0 0 0 0 2 1 0 | * * * * * * * * 120 * * | 0 1 0 0 0 1 0 ... ... ... .xx&#x | 0 2 2 | 0 0 0 0 1 2 0 1 | * * * * * * * * * 120 * | 0 0 1 0 0 0 1 ... ..o3..x ... | 0 0 3 | 0 0 0 0 0 0 3 0 | * * * * * * * * * * 20 | 0 2 0 0 0 0 0 --------------------+------------+------------------------------+---------------------------------------+-------------------- ... x..3o..5x.. ♦ 60 0 0 | 60 60 0 0 0 0 0 0 | 20 30 12 0 0 0 0 0 0 0 0 | 2 * * * * * * ... xfo3oox ...&#xt ♦ 3 3 3 | 3 0 3 0 0 6 3 0 | 1 0 0 3 0 0 0 0 3 0 1 | * 40 * * * * * ... xfo ... xxx&#xt ♦ 4 4 2 | 2 2 4 0 2 4 0 1 | 0 1 0 2 2 0 0 0 0 2 0 | * * 60 * * * * ... ... oo.5xx.&#x ♦ 5 5 0 | 0 5 5 0 5 0 0 0 | 0 0 1 0 5 0 1 0 0 0 0 | * * * 24 * * * .x. ... .o.5.x. ♦ 0 10 0 | 0 0 0 5 10 0 0 0 | 0 0 0 0 0 5 2 0 0 0 0 | * * * * 12 * * .xo ... .ox ...&#x ♦ 0 2 2 | 0 0 0 1 0 4 1 0 | 0 0 0 0 0 0 0 2 2 0 0 | * * * * * 60 * .xo ... ... .xx&#x ♦ 0 4 2 | 0 0 0 2 2 4 0 1 | 0 0 0 0 0 1 0 2 0 2 0 | * * * * * * 60
© 2004-2024 | top of page |