Acronym | biscsrip |
Name |
bistratic trip-cap of srip, {3}-diminished small rhombated pentachoron |
Circumradius | sqrt(7/5) = 1.183216 |
Lace city in approx. ASCII-art |
x3o o3x x3o u3o x3x o3x x3x |
Dihedral angles |
|
Face vector | 27, 75, 66, 18 |
Confer |
|
The relation to spid runs as follows: spid in trippy subsymmetry can be given as o(ox)x3x(ox)o x(uo)x&#xt. That will be transformed into x(ou)x3(-x)(o(-x))o x(uo)x&#xt (faceting, same vertex set). Then a Stott expansion wrt. the second node produces this polychoron.
Alternatively it can be obtained as a diminishing of srip: srip in trippy subsymmetry can be given as x(uo)xo x(ou)xx3o(xo)xo&#xt. Then a diminishing wrt. the last vertex level produces this polychoron.
Incidence matrix according to Dynkin symbol
x(ou)x3o(xo)x x(uo)x&#xt → both heights = sqrt(5/12) = 0.645497 (trip || pseudo compound of u x3o and u-{3} || hip) o(..).3o(..). o(..). | 6 * * * | 2 1 2 1 0 0 0 0 0 0 | 1 2 2 1 1 2 0 0 0 0 0 0 0 0 | 1 1 2 1 0 0 0 .(o.).3.(o.). .(o.). | * 6 * * | 0 0 2 0 2 2 0 0 0 0 | 0 0 1 2 0 2 1 1 2 0 0 0 0 0 | 0 1 1 2 1 0 0 .(.o).3.(.o). .(.o). | * * 3 * | 0 0 0 2 0 0 4 0 0 0 | 0 0 0 0 1 4 0 0 0 2 2 0 0 0 | 0 0 2 2 0 1 0 .(..)o3.(..)o .(..)o | * * * 12 | 0 0 0 0 0 1 1 1 1 1 | 0 0 0 0 0 1 0 1 1 1 1 1 1 1 | 0 0 1 1 1 1 1 -------------------------+----------+------------------------+------------------------------+-------------- x(..). .(..). .(..). | 2 0 0 0 | 6 * * * * * * * * * | 1 1 1 0 0 0 0 0 0 0 0 0 0 0 | 1 1 1 0 0 0 0 .(..). .(..). x(..). | 2 0 0 0 | * 3 * * * * * * * * | 0 2 0 0 1 0 0 0 0 0 0 0 0 0 | 1 0 2 0 0 0 0 o(o.).3o(o.). o(o.).&#x | 1 1 0 0 | * * 12 * * * * * * * | 0 0 1 1 0 1 0 0 0 0 0 0 0 0 | 0 1 1 1 0 0 0 o(.o).3o(.o). o(.o).&#x | 1 0 1 0 | * * * 6 * * * * * * | 0 0 0 0 1 2 0 0 0 0 0 0 0 0 | 0 0 2 1 0 0 0 .(..). .(x.). .(..). | 0 2 0 0 | * * * * 6 * * * * * | 0 0 0 1 0 0 1 0 1 0 0 0 0 0 | 0 1 0 1 1 0 0 .(o.)o3.(o.)o .(o.)o&#x | 0 1 0 1 | * * * * * 12 * * * * | 0 0 0 0 0 1 0 1 1 0 0 0 0 0 | 0 0 1 1 1 0 0 .(.o)o3.(.o)o .(.o)o&#x | 0 0 1 1 | * * * * * * 12 * * * | 0 0 0 0 0 1 0 0 0 1 1 0 0 0 | 0 0 1 1 0 1 0 .(..)x .(..). .(..). | 0 0 0 2 | * * * * * * * 6 * * | 0 0 0 0 0 0 0 1 0 0 0 1 1 0 | 0 0 1 0 1 0 1 .(..). .(..)x .(..). | 0 0 0 2 | * * * * * * * * 6 * | 0 0 0 0 0 0 0 0 1 1 0 1 0 1 | 0 0 0 1 1 1 1 .(..). .(..). .(..)x | 0 0 0 2 | * * * * * * * * * 6 | 0 0 0 0 0 0 0 0 0 0 1 0 1 1 | 0 0 1 0 0 1 1 -------------------------+----------+------------------------+------------------------------+-------------- x(..).3o(..). .(..). | 3 0 0 0 | 3 0 0 0 0 0 0 0 0 0 | 2 * * * * * * * * * * * * * | 1 1 0 0 0 0 0 x(..). .(..). x(..). | 4 0 0 0 | 2 2 0 0 0 0 0 0 0 0 | * 3 * * * * * * * * * * * * | 1 0 1 0 0 0 0 x(o.). .(..). .(..).&#x | 2 1 0 0 | 1 0 2 0 0 0 0 0 0 0 | * * 6 * * * * * * * * * * * | 0 1 1 0 0 0 0 .(..). o(x.). .(..).&#x | 1 2 0 0 | 0 0 2 0 1 0 0 0 0 0 | * * * 6 * * * * * * * * * * | 0 1 0 1 0 0 0 .(..). .(..). x(.o).&#x | 2 0 1 0 | 0 1 0 2 0 0 0 0 0 0 | * * * * 3 * * * * * * * * * | 0 0 2 0 0 0 0 o(oo)o3o(oo)o o(oo)o&#xt | 1 1 1 1 | 0 0 1 1 0 1 1 0 0 0 | * * * * * 12 * * * * * * * * | 0 0 1 1 0 0 0 .(o.).3.(x.). .(..). | 0 3 0 0 | 0 0 0 0 3 0 0 0 0 0 | * * * * * * 2 * * * * * * * | 0 1 0 0 1 0 0 .(o.)x .(..). .(..).&#x | 0 1 0 2 | 0 0 0 0 0 2 0 1 0 0 | * * * * * * * 6 * * * * * * | 0 0 1 0 1 0 0 .(..). .(x.)x .(..).&#x | 0 2 0 2 | 0 0 0 0 1 2 0 0 1 0 | * * * * * * * * 6 * * * * * | 0 0 0 1 1 0 0 .(..). .(.o)x .(..).&#x | 0 0 1 2 | 0 0 0 0 0 0 2 0 1 0 | * * * * * * * * * 6 * * * * | 0 0 0 1 0 1 0 .(..). .(..). .(.o)x&#x | 0 0 1 2 | 0 0 0 0 0 0 2 0 0 1 | * * * * * * * * * * 6 * * * | 0 0 1 0 0 1 0 .(..)x3.(..)x .(..). | 0 0 0 6 | 0 0 0 0 0 0 0 3 3 0 | * * * * * * * * * * * 2 * * | 0 0 0 0 1 0 1 .(..)x .(..). .(..)x | 0 0 0 4 | 0 0 0 0 0 0 0 2 0 2 | * * * * * * * * * * * * 3 * | 0 0 1 0 0 0 1 .(..). .(..)x .(..)x | 0 0 0 4 | 0 0 0 0 0 0 0 0 2 2 | * * * * * * * * * * * * * 3 | 0 0 0 0 0 1 1 -------------------------+----------+------------------------+------------------------------+-------------- x(..).3o(..). x(..). ♦ 6 0 0 0 | 6 3 0 0 0 0 0 0 0 0 | 2 3 0 0 0 0 0 0 0 0 0 0 0 0 | 1 * * * * * * x(o.).3o(x.). .(..).&#x ♦ 3 3 0 0 | 3 0 6 0 3 0 0 0 0 0 | 1 0 3 3 0 0 1 0 0 0 0 0 0 0 | * 2 * * * * * x(ou)x .(..). x(uo)x&#xt ♦ 4 2 2 4 | 2 2 4 4 0 4 4 2 0 2 | 0 1 2 0 2 4 0 2 0 0 2 0 1 0 | * * 3 * * * * .(..). o(xo)x .(..).&#xt ♦ 1 2 1 2 | 0 0 2 1 1 2 2 0 1 0 | 0 0 0 1 0 2 0 0 1 1 0 0 0 0 | * * * 6 * * * .(o.)x3.(x.)x .(..).&#x ♦ 0 3 0 6 | 0 0 0 0 3 6 0 3 3 0 | 0 0 0 0 0 0 1 3 3 0 0 1 0 0 | * * * * 2 * * .(..). .(.o)x .(.o)x&#x ♦ 0 0 1 4 | 0 0 0 0 0 0 4 0 2 2 | 0 0 0 0 0 0 0 0 0 2 2 0 0 1 | * * * * * 3 * .(..)x3.(..)x .(..)x ♦ 0 0 0 12 | 0 0 0 0 0 0 0 6 6 6 | 0 0 0 0 0 0 0 0 0 0 0 2 3 3 | * * * * * * 1
© 2004-2024 | top of page |