| Acronym | ... |
| Name | ((oFxx3xxof3foxo3oofx))&#zx |
| Face vector | 170, 690, 750, 230 |
| Confer |
|
This polychoron either can be derived as a diminishing of the EKF ((oFFxx3xxoof3fooxo3ooffx))&#zx (removing the 3rd layer). Alternatively these processes could be commutated here: starting from ex in pentic subsymmetry, which can be given as ((xffoo3oxoof3fooxo3ooffx))&#zx, one first deletes the 3rd layer, the vertex set of a vertex inscribed f-scaled spid, resulting in ((xf.oo3ox.of3fo.xo3oo.fx))&#zx. Thereon one then applies the kaleido faceting wrt. the first node in the first layer, resulting in (((-x)f.oo3xx.of3fo.xo3oo.fx))&#zx. Finally one applies the Stott expansion wrt. the first node, which reproduces this polychoron alike.
Incidence matrix according to Dynkin symbol
((oFxx3xxof3foxo3oofx))&#zx → all heights = 0 – except those of the not existing lacing(1,2) resp. lacing(2,3). o...3o...3o...3o... | 30 * * * | 2 4 4 0 0 0 0 0 0 0 | 1 2 4 2 2 4 0 0 0 0 0 0 0 0 0 0 | 2 2 2 1 0 0 0 0 0 0 .o..3.o..3.o..3.o.. | * 20 * * | 0 0 0 3 3 0 0 0 0 0 | 0 0 0 0 0 0 3 6 3 0 0 0 0 0 0 0 | 3 0 0 0 1 3 1 0 0 0 ..o.3..o.3..o.3..o. | * * 60 * | 0 2 0 0 0 2 2 2 0 0 | 0 2 1 0 0 2 0 1 0 1 2 1 2 2 0 0 | 1 1 2 0 0 1 0 1 2 0 ...o3...o3...o3...o | * * * 60 | 0 0 2 0 1 0 0 2 1 2 | 0 0 0 2 2 2 0 2 2 0 0 0 2 1 2 1 | 2 0 2 2 0 1 1 0 1 1 ----------------------------+-------------+----------------------------------+--------------------------------------------------+---------------------------- .... x... .... .... | 2 0 0 0 | 30 * * * * * * * * * | 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 2 0 0 0 0 0 0 0 0 o.o.3o.o.3o.o.3o.o. &#x | 1 0 1 0 | * 120 * * * * * * * * | 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 | 1 1 1 0 0 0 0 0 0 0 o..o3o..o3o..o3o..o &#x | 1 0 0 1 | * * 120 * * * * * * * | 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 | 1 0 1 1 0 0 0 0 0 0 .... .x.. .... .... | 0 2 0 0 | * * * 30 * * * * * * | 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 | 1 0 0 0 1 2 0 0 0 0 .o.o3.o.o3.o.o3.o.o &#x | 0 1 0 1 | * * * * 60 * * * * * | 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 | 2 0 0 0 0 1 1 0 0 0 ..x. .... .... .... | 0 0 2 0 | * * * * * 60 * * * * | 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 | 0 1 1 0 0 0 0 1 1 0 .... .... ..x. .... | 0 0 2 0 | * * * * * * 60 * * * | 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 | 0 0 0 0 0 1 0 1 1 0 ..oo3..oo3..oo3..oo &#x | 0 0 1 1 | * * * * * * * 120 * * | 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 | 1 0 1 0 0 1 0 0 1 0 ...x .... .... .... | 0 0 0 2 | * * * * * * * * 30 * | 0 0 0 2 0 0 0 0 0 0 0 0 2 0 2 0 | 0 0 2 2 0 0 0 0 1 1 .... .... .... ...x | 0 0 0 2 | * * * * * * * * * 60 | 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 | 1 0 0 1 0 0 1 0 0 1 ----------------------------+-------------+----------------------------------+--------------------------------------------------+---------------------------- o...3x... .... .... | 3 0 0 0 | 3 0 0 0 0 0 0 0 0 0 | 10 * * * * * * * * * * * * * * * | 0 2 0 0 0 0 0 0 0 0 o.x. .... .... .... | 1 0 2 0 | 0 2 0 0 0 1 0 0 0 0 | * 60 * * * * * * * * * * * * * * | 0 1 1 0 0 0 0 0 0 0 .... x.o. .... .... &#x | 2 0 1 0 | 1 2 0 0 0 0 0 0 0 0 | * * 60 * * * * * * * * * * * * * | 1 1 0 0 0 0 0 0 0 0 o..x .... .... .... &#x | 1 0 0 2 | 0 0 2 0 0 0 0 0 1 0 | * * * 60 * * * * * * * * * * * * | 0 0 1 1 0 0 0 0 0 0 .... .... .... o..x &#x | 1 0 0 2 | 0 0 2 0 0 0 0 0 0 1 | * * * * 60 * * * * * * * * * * * | 1 0 0 1 0 0 0 0 0 0 o.oo3o.oo3o.oo3o.oo &#x | 1 0 1 1 | 0 1 1 0 0 0 0 1 0 0 | * * * * * 120 * * * * * * * * * * | 1 0 1 0 0 0 0 0 0 0 .... .x..3.o.. .... | 0 3 0 0 | 0 0 0 3 0 0 0 0 0 0 | * * * * * * 20 * * * * * * * * * | 0 0 0 0 1 1 0 0 0 0 .... .xof .... .... &#xt | 0 2 1 2 | 0 0 0 1 2 0 0 2 0 0 | * * * * * * * 60 * * * * * * * * | 1 0 0 0 0 1 0 0 0 0 tower b-d-c .... .... .... .o.x &#x | 0 1 0 2 | 0 0 0 0 2 0 0 0 0 1 | * * * * * * * * 60 * * * * * * * | 1 0 0 0 0 0 1 0 0 0 ..x.3..o. .... .... | 0 0 3 0 | 0 0 0 0 0 3 0 0 0 0 | * * * * * * * * * 20 * * * * * * | 0 1 0 0 0 0 0 1 0 0 ..x. .... ..x. .... | 0 0 4 0 | 0 0 0 0 0 2 2 0 0 0 | * * * * * * * * * * 30 * * * * * | 0 0 0 0 0 0 0 1 1 0 .... ..o.3..x. .... | 0 0 3 0 | 0 0 0 0 0 0 3 0 0 0 | * * * * * * * * * * * 20 * * * * | 0 0 0 0 0 1 0 1 0 0 ..xx .... .... .... &#x | 0 0 2 2 | 0 0 0 0 0 1 0 2 1 0 | * * * * * * * * * * * * 60 * * * | 0 0 1 0 0 0 0 0 1 0 .... .... ..xo .... &#x | 0 0 2 1 | 0 0 0 0 0 0 1 2 0 0 | * * * * * * * * * * * * * 60 * * | 0 0 0 0 0 1 0 0 1 0 ...x .... .... ...x | 0 0 0 4 | 0 0 0 0 0 0 0 0 2 2 | * * * * * * * * * * * * * * 30 * | 0 0 0 1 0 0 0 0 0 1 .... .... ...o3...x | 0 0 0 3 | 0 0 0 0 0 0 0 0 0 3 | * * * * * * * * * * * * * * * 20 | 0 0 0 0 0 0 1 0 0 1 ----------------------------+-------------+----------------------------------+--------------------------------------------------+---------------------------- ((.... xxof .... oofx))&#zx ♦ 2 2 2 4 | 1 4 4 1 4 0 0 4 0 2 | 0 0 2 0 2 4 0 2 2 0 0 0 0 0 0 0 | 30 * * * * * * * * * o.x.3x.o. .... .... &#x ♦ 3 0 3 0 | 3 6 0 0 0 3 0 0 0 0 | 1 3 3 0 0 0 0 0 0 1 0 0 0 0 0 0 | * 20 * * * * * * * * o.xx .... .... .... &#x ♦ 1 0 2 2 | 0 2 2 0 0 1 0 2 1 0 | 0 1 0 1 0 2 0 0 0 0 0 0 1 0 0 0 | * * 60 * * * * * * * o..x .... .... o..x &#x ♦ 1 0 0 4 | 0 0 4 0 0 0 0 0 2 2 | 0 0 0 2 2 0 0 0 0 0 0 0 0 0 1 0 | * * * 30 * * * * * * .... .x..3.o..3.o.. ♦ 0 4 0 0 | 0 0 0 6 0 0 0 0 0 0 | 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 | * * * * 5 * * * * * .... .xof3.oxo .... &#xt ♦ 0 3 3 3 | 0 0 0 3 3 0 3 6 0 0 | 0 0 0 0 0 0 1 3 0 0 0 1 0 3 0 0 | * * * * * 20 * * * * tower b-d-c .... .... .o.o3.o.x &#x ♦ 0 1 0 3 | 0 0 0 0 3 0 0 0 0 3 | 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 1 | * * * * * * 20 * * * ..x.3..o.3..x. .... ♦ 0 0 12 0 | 0 0 0 0 0 12 12 0 0 0 | 0 0 0 0 0 0 0 0 0 4 6 4 0 0 0 0 | * * * * * * * 5 * * ..xx .... ..xo .... &#x ♦ 0 0 4 2 | 0 0 0 0 0 2 2 4 1 0 | 0 0 0 0 0 0 0 0 0 0 1 0 2 2 0 0 | * * * * * * * * 30 * ...x .... ...o3...x ♦ 0 0 0 6 | 0 0 0 0 0 0 0 0 3 6 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 | * * * * * * * * * 10
© 2004-2026 | top of page |