Acronym tica gircobcu Name ticagirco bicupola Lace cityin approx. ASCII-art ``` x4x w4o w4o x4x x4x x4u w4x w4x x4u x4x x4x w4o w4o x4x ``` Dihedral angles at {3} between tricu and trip:   150° at {4} between op and trip:   arccos(-sqrt[2/3]) = 144.735610° at {8} between op and tic:   135° at {4} between op and tricu:   135° at {3} between tic and tricu:   120° at {6} between tricu and tricu:   120° at {4} between trip and trip:   arccos(-1/3) = 109.471221° at {8} between op and op:   90° Confer uniform relative: prico   related segmentochora: tic || girco   related CRFs: wx ox3xx4xx&#zx   general polytopal classes: bistratic lace towers

Incidence matrix according to Dynkin symbol

```oxo3xxx4xxx&#xt   → both heights = 1/2
(tic || pseudo girco || tic)

o..3o..4o..     | 24  *  * |  2  1  2  0  0  0  0  0  0 | 1 2  1  2  2 0  0 0  0  0  0 0 0 | 1 1  1 2 0  0 0 0
.o.3.o.4.o.     |  * 48  * |  0  0  1  1  1  1  1  0  0 | 0 0  1  1  1 1  1 1  1  1  1 0 0 | 0 1  1 1 1  1 1 0
..o3..o4..o     |  *  * 24 |  0  0  0  0  0  0  2  2  1 | 0 0  0  0  0 0  0 0  1  2  2 1 2 | 0 0  0 0 1  1 2 1
----------------+----------+----------------------------+----------------------------------+------------------
... x.. ...     |  2  0  0 | 24  *  *  *  *  *  *  *  * | 1 1  0  1  0 0  0 0  0  0  0 0 0 | 1 1  0 1 0  0 0 0
... ... x..     |  2  0  0 |  * 12  *  *  *  *  *  *  * | 0 2  0  0  2 0  0 0  0  0  0 0 0 | 1 0  1 2 0  0 0 0
oo.3oo.4oo.&#x  |  1  1  0 |  *  * 48  *  *  *  *  *  * | 0 0  1  1  1 0  0 0  0  0  0 0 0 | 0 1  1 1 0  0 0 0
.x. ... ...     |  0  2  0 |  *  *  * 24  *  *  *  *  * | 0 0  1  0  0 1  1 0  1  0  0 0 0 | 0 1  1 0 1  1 0 0
... .x. ...     |  0  2  0 |  *  *  *  * 24  *  *  *  * | 0 0  0  1  0 1  0 1  0  1  0 0 0 | 0 1  0 1 1  0 1 0
... ... .x.     |  0  2  0 |  *  *  *  *  * 24  *  *  * | 0 0  0  0  1 0  1 1  0  0  1 0 0 | 0 0  1 1 0  1 1 0
.oo3.oo3.oo&#x  |  0  1  1 |  *  *  *  *  *  * 48  *  * | 0 0  0  0  0 0  0 0  1  1  1 0 0 | 0 0  0 0 1  1 1 0
... ..x ...     |  0  0  2 |  *  *  *  *  *  *  * 24  * | 0 0  0  0  0 0  0 0  0  1  0 1 1 | 0 0  0 0 1  0 1 1
... ... ..x     |  0  0  2 |  *  *  *  *  *  *  *  * 12 | 0 0  0  0  0 0  0 0  0  0  2 0 2 | 0 0  0 0 0  1 2 1
----------------+----------+----------------------------+----------------------------------+------------------
o..3x.. ...     |  3  0  0 |  3  0  0  0  0  0  0  0  0 | 8 *  *  *  * *  * *  *  *  * * * | 1 1  0 0 0  0 0 0
... x..4x..     |  8  0  0 |  4  4  0  0  0  0  0  0  0 | * 6  *  *  * *  * *  *  *  * * * | 1 0  0 1 0  0 0 0
ox. ... ...&#x  |  1  2  0 |  0  0  2  1  0  0  0  0  0 | * * 24  *  * *  * *  *  *  * * * | 0 1  1 0 0  0 0 0
... xx. ...&#x  |  2  2  0 |  1  0  2  0  1  0  0  0  0 | * *  * 24  * *  * *  *  *  * * * | 0 1  0 1 0  0 0 0
... ... xx.&#x  |  2  2  0 |  0  1  2  0  0  1  0  0  0 | * *  *  * 24 *  * *  *  *  * * * | 0 0  1 1 0  0 0 0
.x.3.x. ...     |  0  6  0 |  0  0  0  3  3  0  0  0  0 | * *  *  *  * 8  * *  *  *  * * * | 0 1  0 0 1  0 0 0
.x. ... .x.     |  0  4  0 |  0  0  0  2  0  2  0  0  0 | * *  *  *  * * 12 *  *  *  * * * | 0 0  1 0 0  1 0 0
... .x.4.x.     |  0  8  0 |  0  0  0  0  4  4  0  0  0 | * *  *  *  * *  * 6  *  *  * * * | 0 0  0 1 0  0 1 0
.xo ... ...&#x  |  0  2  1 |  0  0  0  1  0  0  2  0  0 | * *  *  *  * *  * * 24  *  * * * | 0 0  0 0 1  1 0 0
... .xx ...&#x  |  0  2  2 |  0  0  0  0  1  0  2  1  0 | * *  *  *  * *  * *  * 24  * * * | 0 0  0 0 1  0 1 0
... ... .xx&#x  |  0  2  2 |  0  0  0  0  0  1  2  0  1 | * *  *  *  * *  * *  *  * 24 * * | 0 0  0 0 0  1 1 0
..o3..x ...     |  0  0  3 |  0  0  0  0  0  0  0  3  0 | * *  *  *  * *  * *  *  *  * 8 * | 0 0  0 0 1  0 0 1
... ..x4..x     |  0  0  8 |  0  0  0  0  0  0  0  4  4 | * *  *  *  * *  * *  *  *  * * 6 | 0 0  0 0 0  0 1 1
----------------+----------+----------------------------+----------------------------------+------------------
o..3x..4x..     ♦ 24  0  0 | 24 12  0  0  0  0  0  0  0 | 8 6  0  0  0 0  0 0  0  0  0 0 0 | 1 *  * * *  * * *
ox.3xx. ...&#x  ♦  3  6  0 |  3  0  6  3  3  0  0  0  0 | 1 0  3  3  0 1  0 0  0  0  0 0 0 | * 8  * * *  * * *
ox. ... xx.&#x  ♦  2  4  0 |  0  1  4  2  0  2  0  0  0 | 0 0  2  0  2 0  1 0  0  0  0 0 0 | * * 12 * *  * * *
... xx.4xx.&#x  ♦  8  8  0 |  4  4  8  0  4  4  0  0  0 | 0 1  0  4  4 0  0 1  0  0  0 0 0 | * *  * 6 *  * * *
.xo3.xx ...&#x  ♦  0  6  3 |  0  0  0  3  3  0  6  3  0 | 0 0  0  0  0 1  0 0  3  3  0 1 0 | * *  * * 8  * * *
.xo ... .xx&#x  ♦  0  4  2 |  0  0  0  2  0  2  4  0  1 | 0 0  0  0  0 0  1 0  2  0  2 0 0 | * *  * * * 12 * *
... .xx4.xx&#x  ♦  0  8  8 |  0  0  0  0  4  4  8  4  4 | 0 0  0  0  0 0  0 1  0  4  4 0 1 | * *  * * *  * 6 *
..o3..x4..x     ♦  0  0 24 |  0  0  0  0  0  0  0 24 12 | 0 0  0  0  0 0  0 0  0  0  0 8 6 | * *  * * *  * * 1
```

```qo ox3xx4xx&#zx   → height = 0
(tegum sum of (q,x,x)-ticcup and para girco)

o. o.3o.4o.     | 48  * |  2  1  2  0  0  0 |  1  2  1  2  2 0  0 0 | 1  1  1  2
.o .o3.o4.o     |  * 48 |  0  0  2  1  1  1 |  0  0  2  2  2 1  1 1 | 0  2  2  2
----------------+-------+-------------------+-----------------------+-----------
.. .. x. ..     |  2  0 | 48  *  *  *  *  * |  1  1  0  1  0 0  0 0 | 1  1  0  1
.. .. .. x.     |  2  0 |  * 24  *  *  *  * |  0  2  0  0  2 0  0 0 | 1  0  1  2
oo oo3oo4oo&#x  |  1  1 |  *  * 96  *  *  * |  0  0  1  1  1 0  0 0 | 0  1  1  1
.. .x .. ..     |  0  2 |  *  *  * 24  *  * |  0  0  2  0  0 1  1 0 | 0  2  2  0
.. .. .x ..     |  0  2 |  *  *  *  * 24  * |  0  0  0  2  0 1  0 1 | 0  2  0  2
.. .. .. .x     |  0  2 |  *  *  *  *  * 24 |  0  0  0  0  2 0  1 1 | 0  0  2  2
----------------+-------+-------------------+-----------------------+-----------
.. o.3x. ..     |  3  0 |  3  0  0  0  0  0 | 16  *  *  *  * *  * * | 1  1  0  0
.. .. x.4x.     |  8  0 |  4  4  0  0  0  0 |  * 12  *  *  * *  * * | 1  0  0  1
.. ox .. ..&#x  |  1  2 |  0  0  2  1  0  0 |  *  * 48  *  * *  * * | 0  1  1  0
.. .. xx ..&#x  |  2  2 |  1  0  2  0  1  0 |  *  *  * 48  * *  * * | 0  1  0  1
.. .. .. xx&#x  |  2  2 |  0  1  2  0  0  1 |  *  *  *  * 48 *  * * | 0  0  1  1
.. .x3.x ..     |  0  6 |  0  0  0  3  3  0 |  *  *  *  *  * 8  * * | 0  2  0  0
.. .x .. .x     |  0  4 |  0  0  0  2  0  2 |  *  *  *  *  * * 12 * | 0  0  2  0
.. .. .x4.x     |  0  8 |  0  0  0  0  4  4 |  *  *  *  *  * *  * 6 | 0  0  0  2
----------------+-------+-------------------+-----------------------+-----------
.. o.3x.4x.     ♦ 24  0 | 24 12  0  0  0  0 |  8  6  0  0  0 0  0 0 | 2  *  *  *
.. ox3xx ..&#x  ♦  3  6 |  3  0  6  3  3  0 |  1  0  3  3  0 1  0 0 | * 16  *  *
.. ox .. xx&#x  ♦  2  4 |  0  1  4  2  0  2 |  0  0  2  0  2 0  1 0 | *  * 24  *
.. .. xx4xx&#x  ♦  8  8 |  4  4  8  0  4  4 |  0  1  0  4  4 0  0 1 | *  *  * 12
```