Acronym coatotum
Name bistratic co-cap of prip,
tut-diminished prip,
Stott expansion of tip,
(co,toe)-based tutsachoron,
(co,toe)-based tutism
Circumradius sqrt(13/5) = 1.612452
Lace city
in approx. ASCII-art
            +----- x o3x (trip)
          /    +-- u x3x ((u,x)-hip)
        /    /    

    o3x  x3x  x3o  		-- x3o3x (co)
                   
o3x       u3x  u3o 		-- u3o3x ((u,x)-co)
                   
 x3x  u3x  x3u  x3x		-- x3x3x (toe)
Dihedral angles
  • at {4} between hip and trip:   arccos(-2/3) = 131.810315°
  • at {3} between co and trip:   arccos[-sqrt(3/8)] = 127.761244°
  • at {6} between hip and tut:   arccos[-sqrt(3/8)] = 127.761244°
  • at {3} between tricu and trip:   arccos[-sqrt(3/8)] = 127.761244°
  • at {4} between co and hip:   arccos[-1/sqrt(6)] = 114.094843°
  • at {4} between hip and tricu:   arccos[-1/sqrt(6)] = 114.094843°
  • at {3} between co and tut:   arccos(-1/4) = 104.477512°
  • at {6} between toe and tricu:   arccos(-1/4) = 104.477512°
  • at {3} between tricu and tut:   arccos(-1/4) = 104.477512°
  • at {6} between toe and tut:   arccos(1/4) = 75.522488°
  • at {4} between hip and toe:   arccos(sqrt[1/6]) = 65.905157°
Face vector 48, 108, 80, 20
Confer
uniform relative:
prip   tip  
segmentochora:
tutatoe  
related CRFs:
gyprip  
general polytopal classes:
tutsatopes   bistratic lace towers  

Incidence matrix according to Dynkin symbol

xux3xoo3xxx&#xt   → all heights = sqrt(5/8) = 0.790569
(toe || pseudo (u,x)-co || co)

o..3o..3o..     | 24  *  * |  1  1  1  1  0  0  0  0 | 1 1 1  1  1  1 0  0 0 0 0 | 1 1 1 1 0 0
.o.3.o.3.o.     |  * 12  * |  0  0  0  2  2  1  0  0 | 0 0 0  1  2  2 1  2 0 0 0 | 0 1 2 1 1 0
..o3..o3..o     |  *  * 12 |  0  0  0  0  0  1  2  2 | 0 0 0  0  0  2 0  2 1 2 1 | 0 1 2 0 1 1
----------------+----------+-------------------------+---------------------------+------------
x.. ... ...     |  2  0  0 | 12  *  *  *  *  *  *  * | 1 1 0  0  0  1 0  0 0 0 0 | 1 1 1 0 0 0
... x.. ...     |  2  0  0 |  * 12  *  *  *  *  *  * | 1 0 1  1  0  0 0  0 0 0 0 | 1 1 0 1 0 0
... ... x..     |  2  0  0 |  *  * 12  *  *  *  *  * | 0 1 1  0  1  0 0  0 0 0 0 | 1 0 1 1 0 0
oo.3oo.3oo.&#x  |  1  1  0 |  *  *  * 24  *  *  *  * | 0 0 0  1  1  1 0  0 0 0 0 | 0 1 1 1 0 0
... ... .x.     |  0  2  0 |  *  *  *  * 12  *  *  * | 0 0 0  0  1  0 1  1 0 0 0 | 0 0 1 1 1 0
.oo3.oo3.oo&#x  |  0  1  1 |  *  *  *  *  * 12  *  * | 0 0 0  0  0  2 0  2 0 0 0 | 0 1 2 0 1 0
..x ... ...     |  0  0  2 |  *  *  *  *  *  * 12  * | 0 0 0  0  0  1 0  0 1 1 0 | 0 1 1 0 0 1
... ... ..x     |  0  0  2 |  *  *  *  *  *  *  * 12 | 0 0 0  0  0  0 0  1 0 1 1 | 0 0 1 0 1 1
----------------+----------+-------------------------+---------------------------+------------
x..3x.. ...     |  6  0  0 |  3  3  0  0  0  0  0  0 | 4 * *  *  *  * *  * * * * | 1 1 0 0 0 0
x.. ... x..     |  4  0  0 |  2  0  2  0  0  0  0  0 | * 6 *  *  *  * *  * * * * | 1 0 1 0 0 0
... x..3x..     |  6  0  0 |  0  3  3  0  0  0  0  0 | * * 4  *  *  * *  * * * * | 1 0 0 1 0 0
... xo. ...&#x  |  2  1  0 |  0  1  0  2  0  0  0  0 | * * * 12  *  * *  * * * * | 0 1 0 1 0 0
... ... xx.&#x  |  2  2  0 |  0  0  1  2  1  0  0  0 | * * *  * 12  * *  * * * * | 0 0 1 1 0 0
xux ... ...&#xt |  2  2  2 |  1  0  0  2  0  2  1  0 | * * *  *  * 12 *  * * * * | 0 1 1 0 0 0
... .o.3.x.     |  0  3  0 |  0  0  0  0  3  0  0  0 | * * *  *  *  * 4  * * * * | 0 0 0 1 1 0
... ... .xx&#x  |  0  2  2 |  0  0  0  0  1  2  0  1 | * * *  *  *  * * 12 * * * | 0 0 1 0 1 0
..x3..o ...     |  0  0  3 |  0  0  0  0  0  0  3  0 | * * *  *  *  * *  * 4 * * | 0 1 0 0 0 1
..x ... ..x     |  0  0  4 |  0  0  0  0  0  0  2  2 | * * *  *  *  * *  * * 6 * | 0 0 1 0 0 1
... ..o3..x     |  0  0  3 |  0  0  0  0  0  0  0  3 | * * *  *  *  * *  * * * 4 | 0 0 0 0 1 1
----------------+----------+-------------------------+---------------------------+------------
x..3x..3x..      24  0  0 | 12 12 12  0  0  0  0  0 | 4 6 4  0  0  0 0  0 0 0 0 | 1 * * * * *
xux3xoo ...&#xt   6  3  3 |  3  3  0  6  0  3  3  0 | 1 0 0  3  0  3 0  0 1 0 0 | * 4 * * * *
xux ... xxx&#xt   4  4  4 |  2  0  2  4  2  4  2  2 | 0 1 0  0  2  2 0  2 0 1 0 | * * 6 * * *
... xo.3xx.&#x    6  3  0 |  0  3  3  6  3  0  0  0 | 0 0 1  3  3  0 1  0 0 0 0 | * * * 4 * *
... .oo3.xx&#x    0  3  3 |  0  0  0  0  3  3  0  3 | 0 0 0  0  0  0 1  3 0 0 1 | * * * * 4 *
..x3..o3..x       0  0 12 |  0  0  0  0  0  0 12 12 | 0 0 0  0  0  0 0  0 4 6 4 | * * * * * 1

© 2004-2024
top of page