Acronym pacsrit
Name partially (mono-)contracted small rhombated tesseract
Circumradius ...
Lace city
in approx. ASCII-art
x4o x4x   x4x x4o		-  sirco
                 
x4x w4o   w4o x4x		-  tic
                 
x4o x4x   x4x x4o		-  sirco

 |   |     |   +-- squobcu
 |   |     +------ pactic
 |   +------------ pactic
 +---------------- squobcu
Dihedral angles
  • at {3} between oct and trip:   150°
  • at {4} between sirco and trip:   arccos(-1/sqrt(3)) = 125.264390°
  • at {4} between squobcu and trip:   arccos(-1/sqrt(3)) = 125.264390°
  • at {3} between oct and oct:   120°
  • at {3} between oct and sirco:   120°
  • at {3} between oct and squobcu:   120°
  • at {4} between sirco and squobcu:   90°
Confer
uniform relative:
ico   srit  
segmentochora:
sirco || tic  
related CRFs:
pexic   bicyte ausodip  
general polytopal classes:
partial Stott expansions   bistratic lace towers  

Incidence matrix according to Dynkin symbol

xox3oxo4xxx&#xt   → both heights = 1/sqrt(2) = 0.707107
(sirco || pseudo tic || sirco)

o..3o..4o..      & | 48  * |  2  2  2  0  0 |  1  2  1  2  1  2 0 | 1  1  2 1
.o.3.o.4.o.        |  * 24 |  0  0  4  2  1 |  0  0  0  2  4  4 1 | 0  2  2 2
-------------------+-------+----------------+---------------------+----------
x.. ... ...      & |  2  0 | 48  *  *  *  * |  1  1  0  1  0  0 0 | 1  1  1 0
... ... x..      & |  2  0 |  * 48  *  *  * |  0  1  1  0  0  1 0 | 1  0  1 1
oo.3oo.4oo.&#x   & |  1  1 |  *  * 96  *  * |  0  0  0  1  1  1 0 | 0  1  1 1
... .x. ...        |  0  2 |  *  *  * 24  * |  0  0  0  0  2  0 1 | 0  2  0 1
... ... .x.        |  0  2 |  *  *  *  * 12 |  0  0  0  0  0  4 0 | 0  0  2 2
-------------------+-------+----------------+---------------------+----------
x..3o.. ...      & |  3  0 |  3  0  0  0  0 | 16  *  *  *  *  * * | 1  1  0 0
x.. ... x..      & |  4  0 |  2  2  0  0  0 |  * 24  *  *  *  * * | 1  0  1 0
... o..4x..      & |  4  0 |  0  4  0  0  0 |  *  * 12  *  *  * * | 1  0  0 1
xo. ... ...&#x   & |  2  1 |  1  0  2  0  0 |  *  *  * 48  *  * * | 0  1  1 0
... ox. ...&#x   & |  1  2 |  0  0  2  1  0 |  *  *  *  * 48  * * | 0  1  0 1
... ... xx.&#x   & |  2  2 |  0  1  2  0  1 |  *  *  *  *  * 48 * | 0  0  1 1
.o.3.x. ...        |  0  3 |  0  0  0  3  0 |  *  *  *  *  *  * 8 | 0  2  0 0
-------------------+-------+----------------+---------------------+----------
x..3o..4x..      &  24  0 | 24 24  0  0  0 |  8 12  6  0  0  0 0 | 2  *  * *
xo.3ox. ...&#x   &   3  3 |  3  0  6  3  0 |  1  0  0  3  3  0 1 | * 16  * *
xo. ... xx.&#x   &   4  2 |  2  2  4  0  1 |  0  1  0  2  0  2 0 | *  * 24 *
... oxo4xxx&#xt      8  8 |  0  8 16  4  4 |  0  0  2  0  8  8 0 | *  *  * 6

qo xo3ox4xx&#zx   → height = 0
(tegum sum of (q,x,x)-sircope and para tic)

o. o.3o.4o.     | 48  * |  2  2  2  0  0 |  1  2  1  2  1  2 0 | 1 1  1  2
.o .o3.o4.o     |  * 24 |  0  0  4  2  1 |  0  0  0  2  4  4 1 | 0 2  2  2
----------------+-------+----------------+---------------------+----------
.. x. .. ..     |  2  0 | 48  *  *  *  * |  1  1  0  1  0  0 0 | 1 0  1  1
.. .. .. x.     |  2  0 |  * 48  *  *  * |  0  1  1  0  0  1 0 | 1 1  0  1
oo oo3oo4oo&#x  |  1  1 |  *  * 96  *  * |  0  0  0  1  1  1 0 | 0 1  1  1
.. .. .x ..     |  0  2 |  *  *  * 24  * |  0  0  0  0  2  0 1 | 0 1  2  0
.. .. .. .x     |  0  2 |  *  *  *  * 12 |  0  0  0  0  0  4 0 | 0 2  0  2
----------------+-------+----------------+---------------------+----------
.. x.3o. ..     |  3  0 |  3  0  0  0  0 | 16  *  *  *  *  * * | 1 0  1  0
.. x. .. x.     |  4  0 |  2  2  0  0  0 |  * 24  *  *  *  * * | 1 0  0  1
.. .. o.4x.     |  4  0 |  0  4  0  0  0 |  *  * 12  *  *  * * | 1 1  0  0
.. xo .. ..&#x  |  2  1 |  1  0  2  0  0 |  *  *  * 48  *  * * | 0 0  1  1
.. .. ox ..&#x  |  1  2 |  0  0  2  1  0 |  *  *  *  * 48  * * | 0 1  1  0
.. .. .. xx&#x  |  2  2 |  0  1  2  0  1 |  *  *  *  *  * 48 * | 0 1  0  1
.. .o3.x ..     |  0  3 |  0  0  0  3  0 |  *  *  *  *  *  * 8 | 0 0  2  0
----------------+-------+----------------+---------------------+----------
.. x.3o.4x.      24  0 | 24 24  0  0  0 |  8 12  6  0  0  0 0 | 2 *  *  *
qo .. ox4xx&#zx   8  8 |  0  8 16  4  4 |  0  0  2  0  8  8 0 | * 6  *  *
.. xo3ox ..&#x    3  3 |  3  0  6  3  0 |  1  0  0  3  3  0 1 | * * 16  *
.. xo .. xx&#x    4  2 |  2  2  4  0  1 |  0  1  0  2  0  2 0 | * *  * 24

(wx)(wx)(wx) (ox)(xo)(ox)4(xx)(xw)(xx)&#xt   → both heights = 1/sqrt(2) = 0.707107
(sirco || pseudo tic || sirco)

(o.)(..)(..) (o.)(..)(..)4(o.)(..)(..)     & | 16  *  * * |  2  2  2  0  0  0  0  0 0 0  0 0 | 1  1  2  1  2  2 0 0  0  0  0  0 0 | 1 1  1  2 0 0
(.o)(..)(..) (.o)(..)(..)4(.o)(..)(..)     & |  * 32  * * |  0  1  0  1  1  1  1  1 0 0  0 0 | 0  1  1  0  0  1 1 1  1  1  1  1 0 | 1 0  1  1 1 1
(..)(o.)(..) (..)(o.)(..)4(..)(o.)(..)       |  *  * 16 * |  0  0  2  0  0  0  2  0 1 1  1 0 | 0  0  0  2  2  2 0 0  2  0  0  2 1 | 0 1  2  2 1 0
(..)(.o)(..) (..)(.o)(..)4(..)(.o)(..)       |  *  *  * 8 |  0  0  0  0  0  0  0  4 0 0  2 1 | 0  0  0  0  0  0 0 0  0  4  2  4 1 | 0 0  2  0 2 2
---------------------------------------------+------------+----------------------------------+------------------------------------+--------------
(..)(..)(..) (..)(..)(..) (x.)(..)(..)     & |  2  0  0 0 | 16  *  *  *  *  *  *  * * *  * * | 1  0  1  0  1  0 0 0  0  0  0  0 0 | 1 1  0  1 0 0
(oo)(..)(..) (oo)(..)(..)4(oo)(..)(..)&#x  & |  1  1  0 0 |  * 32  *  *  *  *  *  * * *  * * | 0  1  1  0  0  1 0 0  0  0  0  0 0 | 1 0  1  1 0 0
(o.)(o.)(..) (o.)(o.)(..)4(o.)(o.)(..)&#x  & |  1  0  1 0 |  *  * 32  *  *  *  *  * * *  * * | 0  0  0  1  1  1 0 0  0  0  0  0 0 | 0 1  1  1 0 0
(.x)(..)(..) (..)(..)(..) (..)(..)(..)     & |  0  2  0 0 |  *  *  * 16  *  *  *  * * *  * * | 0  0  0  0  0  0 1 1  0  1  0  0 0 | 1 0  0  0 1 1
(..)(..)(..) (.x)(..)(..) (..)(..)(..)     & |  0  2  0 0 |  *  *  *  * 16  *  *  * * *  * * | 0  1  0  0  0  0 1 0  0  0  1  0 0 | 1 0  1  0 0 1
(..)(..)(..) (..)(..)(..) (.x)(..)(..)     & |  0  2  0 0 |  *  *  *  *  * 16  *  * * *  * * | 0  0  1  0  0  0 0 1  1  0  0  0 0 | 1 0  0  1 1 0
(.o)(o.)(..) (.o)(o.)(..)4(.o)(o.)(..)&#x  & |  0  1  1 0 |  *  *  *  *  *  * 32  * * *  * * | 0  0  0  0  0  1 0 0  1  0  0  1 0 | 0 0  1  1 1 0
(.o)(.o)(..) (.o)(.o)(..)4(.o)(.o)(..)&#x  & |  0  1  0 1 |  *  *  *  *  *  *  * 32 * *  * * | 0  0  0  0  0  0 0 0  0  1  1  1 0 | 0 0  1  0 1 1
(..)(..)(..) (..)(x.)(..) (..)(..)(..)       |  0  0  2 0 |  *  *  *  *  *  *  *  * 8 *  * * | 0  0  0  2  0  0 0 0  0  0  0  0 1 | 0 1  2  0 0 0
(..)(..)(..) (..)(..)(..) (..)(x.)(..)       |  0  0  2 0 |  *  *  *  *  *  *  *  * * 8  * * | 0  0  0  0  2  0 0 0  2  0  0  0 0 | 0 1  0  2 1 0
(..)(oo)(..) (..)(oo)(..)4(..)(oo)(..)&#x    |  0  0  1 1 |  *  *  *  *  *  *  *  * * * 16 * | 0  0  0  0  0  0 0 0  0  0  0  2 1 | 0 0  2  0 1 0
(..)(.x)(..) (..)(..)(..) (..)(..)(..)       |  0  0  0 2 |  *  *  *  *  *  *  *  * * *  * 4 | 0  0  0  0  0  0 0 0  0  4  0  0 0 | 0 0  0  0 2 2
---------------------------------------------+------------+----------------------------------+------------------------------------+--------------
(..)(..)(..) (o.)(..)(..)4(x.)(..)(..)     & |  4  0  0 0 |  4  0  0  0  0  0  0  0 0 0  0 0 | 4  *  *  *  *  * * *  *  *  *  * * | 1 1  0  0 0 0
(..)(..)(..) (ox)(..)(..) (..)(..)(..)&#x  & |  1  2  0 0 |  0  2  0  0  1  0  0  0 0 0  0 0 | * 16  *  *  *  * * *  *  *  *  * * | 1 0  1  0 0 0
(..)(..)(..) (..)(..)(..) (xx)(..)(..)&#x  & |  2  2  0 0 |  1  2  0  0  0  1  0  0 0 0  0 0 | *  * 16  *  *  * * *  *  *  *  * * | 1 0  0  1 0 0
(..)(..)(..) (o.)(x.)(..) (..)(..)(..)&#x  & |  1  0  2 0 |  0  0  2  0  0  0  0  0 1 0  0 0 | *  *  * 16  *  * * *  *  *  *  * * | 0 1  1  0 0 0
(..)(..)(..) (..)(..)(..) (x.)(x.)(..)&#x  & |  2  0  2 0 |  1  0  2  0  0  0  0  0 0 1  0 0 | *  *  *  * 16  * * *  *  *  *  * * | 0 1  0  1 0 0
(oo)(o.)(..) (oo)(o.)(..)4(oo)(o.)(..)&#x  & |  1  1  1 0 |  0  1  1  0  0  0  1  0 0 0  0 0 | *  *  *  *  * 32 * *  *  *  *  * * | 0 0  1  1 0 0
(.x)(..)(..) (.x)(..)(..) (..)(..)(..)     & |  0  4  0 0 |  0  0  0  2  2  0  0  0 0 0  0 0 | *  *  *  *  *  * 8 *  *  *  *  * * | 1 0  0  0 0 1
(.x)(..)(..) (..)(..)(..) (.x)(..)(..)     & |  0  4  0 0 |  0  0  0  2  0  2  0  0 0 0  0 0 | *  *  *  *  *  * * 8  *  *  *  * * | 1 0  0  0 1 0
(..)(..)(..) (..)(..)(..) (.x)(x.)(..)     & |  0  2  2 0 |  0  0  0  0  0  1  2  0 0 1  0 0 | *  *  *  *  *  * * * 16  *  *  * * | 0 0  0  1 1 0
(.x)(.x)(..) (..)(..)(..) (..)(..)(..)&#x  & |  0  2  0 2 |  0  0  0  1  0  0  0  2 0 0  0 1 | *  *  *  *  *  * * *  * 16  *  * * | 0 0  0  0 1 1
(..)(..)(..) (.x)(.o)(..) (..)(..)(..)&#x  & |  0  2  0 1 |  0  0  0  0  1  0  0  2 0 0  0 0 | *  *  *  *  *  * * *  *  * 16  * * | 0 0  1  0 0 1
(.o)(oo)(..) (.o)(oo)(..)4(.o)(oo)(..)&#x  & |  0  1  1 1 |  0  0  0  0  0  0  1  1 0 0  1 0 | *  *  *  *  *  * * *  *  *  * 32 * | 0 0  1  0 1 0
(..)(..)(..) (..)(xo)(..) (..)(..)(..)&#x    |  0  0  2 1 |  0  0  0  0  0  0  0  0 1 0  2 0 | *  *  *  *  *  * * *  *  *  *  * 8 | 0 0  2  0 0 0
---------------------------------------------+------------+----------------------------------+------------------------------------+--------------
(wx)(..)(..) (ox)(..)(..)4(xx)(..)(..)&#zx &   8 16  0 0 |  8 16  0  8  8  8  0  0 0 0  0 0 | 2  8  8  0  0  0 4 4  0  0  0  0 0 | 2 *  *  * * *
(..)(..)(..) (o.)(x.)(o.)4(x.)(x.)(x.)&#xt     8  0  8 0 |  8  0 16  0  0  0  0  0 4 4  0 0 | 2  0  0  8  8  0 0 0  0  0  0  0 0 | * 2  *  * * *
(..)(..)(..) (ox)(xo)(..) (..)(..)(..)&#xr &   1  2  2 1 |  0  2  2  0  1  0  2  2 1 0  2 0 | 0  1  0  1  0  2 0 0  0  0  1  2 1 | * * 16  * * *
(..)(..)(..) (..)(..)(..) (xx)(x.)(..)&#x  &   2  2  2 0 |  1  2  2  0  0  1  2  0 0 1  0 0 | 0  0  1  0  1  2 0 0  1  0  0  0 0 | * *  * 16 * *
(.x)(wx)(.x) (..)(..)(..) (.x)(xw)(.x)&#xt     0  8  4 4 |  0  0  0  4  0  4  8  8 0 2  4 2 | 0  0  0  0  0  0 0 2  4  4  0  8 0 | * *  *  * 4 *
(.x)(.x)(..) (.x)(.o)(..) (..)(..)(..)&#x  &   0  4  0 2 |  0  0  0  2  2  0  0  4 0 0  0 1 | 0  0  0  0  0  0 1 0  0  2  2  0 0 | * *  *  * * 8

© 2004-2018
top of page