Acronym squobcu, J28 Name square orthobicupola ` © ©` Vertex figure [3,43], [32,42] Lace cityin approx. ASCII-art ``` o o o q q o o q q o o o ``` ``` x x x w w x x x ``` Coordinates (1/sqrt(2); 1/2, 1/2)       & all changes of sign (0; 1/2, (1+sqrt(2))/2)   & all permutations within last 2 coords, all changes of sign General of army (is itself convex) Colonel of regiment (is itself locally convex) Dihedral angles between {3} and {4} (at squacu lacings):   arccos[-sqrt(2/3)] = 144.735610° between {4} and {4} (polar edges):   135° between {3} and {3}:   arccos(-1/3) = 109.471221° between {4} and {4} (equatorial edges):   90° Confer uniform relative: sirco   related Johnson solids: squacu   squigybcu   esquidpy   general polytopal classes: Johnson solids   partial Stott expansions   bistratic lace towers Externallinks

Incidence matrix according to Dynkin symbol

```xxx4oxo&#xt   → both heights = 1/sqrt(2) = 0.707107
({4} || pseudo {8} || {4})

o..4o..    | 4 * * | 2 2 0 0 0 0 | 1 2 1 0 0 0
.o.4.o.    | * 8 * | 0 1 1 1 1 0 | 0 1 1 1 1 0
..o4..o    | * * 4 | 0 0 0 0 2 2 | 0 0 0 2 1 1
-----------+-------+-------------+------------
x.. ...    | 2 0 0 | 4 * * * * * | 1 1 0 0 0 0
oo.4oo.&#x | 1 1 0 | * 8 * * * * | 0 1 1 0 0 0
.x. ...    | 0 2 0 | * * 4 * * * | 0 1 0 1 0 0
... .x.    | 0 2 0 | * * * 4 * * | 0 0 1 0 1 0
.oo4.oo&#x | 0 1 1 | * * * * 8 * | 0 0 0 1 1 0
..x ...    | 0 0 2 | * * * * * 4 | 0 0 0 1 0 1
-----------+-------+-------------+------------
x..4o..    | 4 0 0 | 4 0 0 0 0 0 | 1 * * * * *
xx. ...&#x | 2 2 0 | 1 2 1 0 0 0 | * 4 * * * *
... ox.&#x | 1 2 0 | 0 2 0 1 0 0 | * * 4 * * *
.xx ...&#x | 0 2 2 | 0 0 1 0 2 1 | * * * 4 * *
... .xo&#x | 0 2 1 | 0 0 0 1 2 0 | * * * * 4 *
..x4..o    | 0 0 4 | 0 0 0 0 0 4 | * * * * * 1
```
```or
o..4o..    & | 8 * | 2  2 0 0 | 1 2 1
.o.4.o.      | * 8 | 0  2 1 1 | 0 2 2
-------------+-----+----------+------
x.. ...    & | 2 0 | 8  * * * | 1 1 0
oo.4oo.&#x & | 1 1 | * 16 * * | 0 1 1
.x. ...      | 0 2 | *  * 4 * | 0 2 0
... .x.      | 0 2 | *  * * 4 | 0 0 2
-------------+-----+----------+------
x..4o..    & | 4 0 | 4  0 0 0 | 2 * *
xx. ...&#x & | 2 2 | 1  2 1 0 | * 8 *
... ox.&#x & | 1 2 | 0  2 0 1 | * * 8
```

```qo xx4ox&#zx   → all heights = 0
(tegum sum of (q,x,x)-cube and para {8})

o. o.4o.    | 8 * | 2  2 0 0 | 1 2 1
.o .o4.o    | * 8 | 0  2 1 1 | 0 2 2
------------+-----+----------+------
.. x. ..    | 2 0 | 8  * * * | 1 1 0
oo oo4oo&#x | 1 1 | * 16 * * | 0 1 1
.. .x ..    | 0 2 | *  * 4 * | 0 2 0
.. .. .x    | 0 2 | *  * * 4 | 0 0 2
------------+-----+----------+------
.. x.4o.    | 4 0 | 4  0 0 0 | 2 * *
.. xx ..&#x | 2 2 | 1  2 1 0 | * 8 *
.. .. ox&#x | 1 2 | 0  2 0 1 | * * 8
```

```qoo2xwx2xxw&#zx   → all heights = 0
(tegum sum of (q,x,x)-cube, para (w,x)-{4}, and para (x,w)-{4})

o..2o..2o..    | 8 * * | 1 1 1 1 0 0 0 | 1 1 1 1
.o.2.o.2.o.    | * 4 * | 0 0 2 0 1 1 0 | 0 2 0 2
..o2..o2..o    | * * 4 | 0 0 0 2 0 1 1 | 0 0 2 2
---------------+-------+---------------+--------
... x.. ...    | 2 0 0 | 4 * * * * * * | 1 0 1 0
... ... x..    | 2 0 0 | * 4 * * * * * | 1 1 0 0
oo.2oo.2oo.&#x | 1 1 0 | * * 8 * * * * | 0 1 0 1
o.o2o.o2o.o&#x | 1 0 1 | * * * 8 * * * | 0 0 1 1
... ... .x.    | 0 2 0 | * * * * 2 * * | 0 2 0 0
.oo2.oo2.oo&#x | 0 1 1 | * * * * * 4 * | 0 0 0 2
... ..x ...    | 0 0 2 | * * * * * * 2 | 0 0 2 0
---------------+-------+---------------+--------
... x..2x..    | 4 0 0 | 2 2 0 0 0 0 0 | 2 * * *
... ... xx.&#x | 2 2 0 | 0 1 2 0 1 0 0 | * 4 * *
... x.x ...&#x | 2 0 2 | 1 0 0 2 0 0 1 | * * 4 *
ooo2ooo2ooo&#x | 1 1 1 | 0 0 1 1 0 1 0 | * * * 8
```