Acronym | proh | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Name |
prismatorhombated hexadecachoron, prismatotruncated tesseract, runcitruncated tesseract | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Cross sections |
© | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Circumradius | sqrt[4+2 sqrt(2)] = 2.613126 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vertex figure |
© | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vertex layers |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lace city in approx. ASCII-art |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
o3x o3x x3x x3x x3o x3o w3x w3x w3o U3x U3x w3o w3u w3u w3x W3o W3o w3x x3U x3U U3x U3x x3w o3W o3W x3w u3w u3w o3w x3U x3U o3w x3w x3w o3x o3x x3x x3x x3o x3o | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Coordinates | ((1+2 sqrt(2))/2, (1+sqrt(2))/2, (1+sqrt(2))/2, 1/2) & all permutations, all changes of sign | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
General of army | (is itself convex) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Colonel of regiment |
(is itself locally convex
– uniform polychoral members:
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Dihedral angles | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Face vector | 192, 480, 368, 80 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Confer |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
External links |
As abstract polytope proh is isomorphic to quiproh, thereby replacing octagons by octagrams, resp. replacing tic by quith and replacing op by stop.
Augmenting coatics onto the tic would lead to the srico (which would have an even larger symmetry)!
Note that proh can be thought of as the external blend of 1 rico + 16 copes + 32 triddips + 24 squacupes + 8 coatics. This decomposition is described as the degenerate segmentoteron xx3oo3xx4ox&#x. – Alternatively it can be decomposed into 1 srit + 16 octacoes + 32 opes + 24 squipufs + 8 sircoatics according to ox3xo3ox4xx&#x.
Incidence matrix according to Dynkin symbol
x3o3x4x . . . . | 192 | 2 2 1 | 1 2 2 1 2 | 1 1 2 1 --------+-----+------------+----------------+----------- x . . . | 2 | 192 * * | 1 1 1 0 0 | 1 1 1 0 . . x . | 2 | * 192 * | 0 1 0 1 1 | 1 0 1 1 . . . x | 2 | * * 96 | 0 0 2 0 2 | 0 1 2 1 --------+-----+------------+----------------+----------- x3o . . | 3 | 3 0 0 | 64 * * * * | 1 1 0 0 x . x . | 4 | 2 2 0 | * 96 * * * | 1 0 1 0 x . . x | 4 | 2 0 2 | * * 96 * * | 0 1 1 0 . o3x . | 3 | 0 3 0 | * * * 64 * | 1 0 0 1 . . x4x | 8 | 0 4 4 | * * * * 48 | 0 0 1 1 --------+-----+------------+----------------+----------- x3o3x . ♦ 12 | 12 12 0 | 4 6 0 4 0 | 16 * * * x3o . x ♦ 6 | 6 0 3 | 2 0 3 0 0 | * 32 * * x . x4x ♦ 16 | 8 8 8 | 0 4 4 0 2 | * * 24 * . o3x4x ♦ 24 | 0 24 12 | 0 0 0 8 6 | * * * 8 snubbed forms: x3o3x4s, x3o3β4x, β3o3x4x, β3o3β4x, β3o3x4β, x3o3β4β, β3o3β4β
x3/2o3/2x4x . . . . | 192 | 2 2 1 | 1 2 2 1 2 | 1 1 2 1 ------------+-----+------------+----------------+----------- x . . . | 2 | 192 * * | 1 1 1 0 0 | 1 1 1 0 . . x . | 2 | * 192 * | 0 1 0 1 1 | 1 0 1 1 . . . x | 2 | * * 96 | 0 0 2 0 2 | 0 1 2 1 ------------+-----+------------+----------------+----------- x3/2o . . | 3 | 3 0 0 | 64 * * * * | 1 1 0 0 x . x . | 4 | 2 2 0 | * 96 * * * | 1 0 1 0 x . . x | 4 | 2 0 2 | * * 96 * * | 0 1 1 0 . o3/2x . | 3 | 0 3 0 | * * * 64 * | 1 0 0 1 . . x4x | 8 | 0 4 4 | * * * * 48 | 0 0 1 1 ------------+-----+------------+----------------+----------- x3/2o3/2x . ♦ 12 | 12 12 0 | 4 6 0 4 0 | 16 * * * x3/2o . x ♦ 6 | 6 0 3 | 2 0 3 0 0 | * 32 * * x . x4x ♦ 16 | 8 8 8 | 0 4 4 0 2 | * * 24 * . o3/2x4x ♦ 24 | 0 24 12 | 0 0 0 8 6 | * * * 8
oxxxxo3xxooxx4xxwwxx&#xt → all non-central heights = 1/sqrt(2) = 0.707107 central height = 1 (tic || pseudo girco || pseudo (x,w)-sirco || pseudo (x,w)-sirco || pseudo girco || tic) o.....3o.....4o..... & | 48 * * | 2 1 2 0 0 0 0 0 0 | 1 2 1 2 2 0 0 0 0 0 0 0 | 1 1 1 2 0 0 0 .o....3.o....4.o.... & | * 96 * | 0 0 1 1 1 1 1 0 0 | 0 0 1 1 1 1 1 1 1 1 0 0 | 0 1 1 1 1 1 0 ..o...3..o...4..o... & | * * 48 | 0 0 0 0 0 0 2 2 1 | 0 0 0 0 0 0 0 2 1 2 1 2 | 0 1 0 0 2 1 1 ----------------------------+----------+----------------------------+-------------------------------------+------------------ ...... x..... ...... & | 2 0 0 | 48 * * * * * * * * | 1 1 0 1 0 0 0 0 0 0 0 0 | 1 1 0 1 0 0 0 ...... ...... x..... & | 2 0 0 | * 24 * * * * * * * | 0 2 0 0 2 0 0 0 0 0 0 0 | 1 0 1 2 0 0 0 oo....3oo....4oo....&#x & | 1 1 0 | * * 96 * * * * * * | 0 0 1 1 1 0 0 0 0 0 0 0 | 0 1 1 1 0 0 0 .x.... ...... ...... & | 0 2 0 | * * * 48 * * * * * | 0 0 1 0 0 1 0 1 0 0 0 0 | 0 1 1 0 1 0 0 ...... .x.... ...... & | 0 2 0 | * * * * 48 * * * * | 0 0 0 1 0 0 1 0 1 0 0 0 | 0 1 0 1 0 1 0 ...... ...... .x.... & | 0 2 0 | * * * * * 48 * * * | 0 0 0 0 1 1 1 0 0 1 0 0 | 0 0 1 1 1 1 0 .oo...3.oo...4.oo...&#x & | 0 1 1 | * * * * * * 96 * * | 0 0 0 0 0 0 0 1 1 1 0 0 | 0 1 0 0 1 1 0 ..x... ...... ...... & | 0 0 2 | * * * * * * * 48 * | 0 0 0 0 0 0 0 1 0 0 1 1 | 0 1 0 0 1 0 1 ..oo..3..oo..4..oo..&#x | 0 0 2 | * * * * * * * * 24 | 0 0 0 0 0 0 0 0 0 2 0 2 | 0 0 0 0 2 1 1 ----------------------------+----------+----------------------------+-------------------------------------+------------------ o.....3x..... ...... & | 3 0 0 | 3 0 0 0 0 0 0 0 0 | 16 * * * * * * * * * * * | 1 1 0 0 0 0 0 ...... x.....4x..... & | 8 0 0 | 4 4 0 0 0 0 0 0 0 | * 12 * * * * * * * * * * | 1 0 0 1 0 0 0 ox.... ...... ......&#x & | 1 2 0 | 0 0 2 1 0 0 0 0 0 | * * 48 * * * * * * * * * | 0 1 1 0 0 0 0 ...... xx.... ......&#x & | 2 2 0 | 1 0 2 0 1 0 0 0 0 | * * * 48 * * * * * * * * | 0 1 0 1 0 0 0 ...... ...... xx....&#x & | 2 2 0 | 0 1 2 0 0 1 0 0 0 | * * * * 48 * * * * * * * | 0 0 1 1 0 0 0 .x.... ...... .x.... & | 0 4 0 | 0 0 0 2 0 2 0 0 0 | * * * * * 24 * * * * * * | 0 0 1 0 1 0 0 ...... .x....4.x.... & | 0 8 0 | 0 0 0 0 4 4 0 0 0 | * * * * * * 12 * * * * * | 0 0 0 1 0 1 0 .xx... ...... ......&#x & | 0 2 2 | 0 0 0 1 0 0 2 1 0 | * * * * * * * 48 * * * * | 0 1 0 0 1 0 0 ...... .xo... ......&#x & | 0 2 1 | 0 0 0 0 1 0 2 0 0 | * * * * * * * * 48 * * * | 0 1 0 0 0 1 0 ...... ...... .xwwx.&#xt | 0 4 4 | 0 0 0 0 0 2 4 0 2 | * * * * * * * * * 24 * * | 0 0 0 0 1 1 0 ..x...3..o... ...... & | 0 0 3 | 0 0 0 0 0 0 0 3 0 | * * * * * * * * * * 16 * | 0 1 0 0 0 0 1 ..xx.. ...... ......&#x | 0 0 4 | 0 0 0 0 0 0 0 2 2 | * * * * * * * * * * * 24 | 0 0 0 0 1 0 1 ----------------------------+----------+----------------------------+-------------------------------------+------------------ o.....3x.....4x..... & ♦ 24 0 0 | 24 12 0 0 0 0 0 0 0 | 8 6 0 0 0 0 0 0 0 0 0 0 | 2 * * * * * * oxx...3xxo... ......&#xt & ♦ 3 6 3 | 3 0 6 3 3 0 6 3 0 | 1 0 3 3 0 0 0 3 3 0 1 0 | * 16 * * * * * ox.... ...... xx....&#x & ♦ 2 4 0 | 0 1 4 2 0 2 0 0 0 | 0 0 2 0 2 1 0 0 0 0 0 0 | * * 24 * * * * ...... xx....4xx....&#x & ♦ 8 8 0 | 4 4 8 0 4 4 0 0 0 | 0 1 0 4 4 0 1 0 0 0 0 0 | * * * 12 * * * .xxxx. ...... .xwwx.&#xt ♦ 0 8 8 | 0 0 0 4 0 4 8 4 4 | 0 0 0 0 0 2 0 4 0 2 0 2 | * * * * 12 * * ...... .xoox.4.xwwx.&#xt ♦ 0 16 8 | 0 0 0 0 8 8 16 0 4 | 0 0 0 0 0 0 2 0 8 4 0 0 | * * * * * 6 * ..xx..3..oo.. ......&#x ♦ 0 0 6 | 0 0 0 0 0 0 0 6 3 | 0 0 0 0 0 0 0 0 0 0 2 3 | * * * * * * 8
wx3oo3xw *b3xx&#zx → height = 0 (tegum sum of 2 mutually gyrated (w,x,x)-ricoes) o.3o.3o. *b3o. | 96 * | 2 2 1 0 0 | 1 1 2 2 2 0 0 0 | 1 1 2 1 0 .o3.o3.o *b3.o | * 96 | 0 0 1 2 2 | 0 0 0 2 2 1 2 1 | 0 1 2 1 1 -------------------+-------+----------------+-------------------------+------------ .. .. x. .. | 2 0 | 96 * * * * | 1 0 1 1 0 0 0 0 | 1 1 1 0 0 .. .. .. x. | 2 0 | * 96 * * * | 0 1 1 0 1 0 0 0 | 1 0 1 1 0 oo3oo3oo *b3oo&#x | 1 1 | * * 96 * * | 0 0 0 2 2 0 0 0 | 0 1 2 1 0 .x .. .. .. | 0 2 | * * * 96 * | 0 0 0 1 0 1 1 0 | 0 1 1 0 1 .. .. .. .x | 0 2 | * * * * 96 | 0 0 0 0 1 0 1 1 | 0 0 1 1 1 -------------------+-------+----------------+-------------------------+------------ .. o.3x. .. | 3 0 | 3 0 0 0 0 | 32 * * * * * * * | 1 1 0 0 0 .. o. .. *b3x. | 3 0 | 0 3 0 0 0 | * 32 * * * * * * | 1 0 0 1 0 .. .. x. x. | 4 0 | 2 2 0 0 0 | * * 48 * * * * * | 1 0 1 0 0 wx .. xw ..&#zx | 4 4 | 2 0 4 2 0 | * * * 48 * * * * | 0 1 1 0 0 .. .. .. xx&#x | 2 2 | 0 1 2 0 1 | * * * * 96 * * * | 0 0 1 1 0 .x3.o .. .. | 0 3 | 0 0 0 3 0 | * * * * * 32 * * | 0 1 0 0 1 .x .. .. .x | 0 4 | 0 0 0 2 2 | * * * * * * 48 * | 0 0 1 0 1 .. .o .. *b3.x | 0 3 | 0 0 0 0 3 | * * * * * * * 32 | 0 0 0 1 1 -------------------+-------+----------------+-------------------------+------------ .. o.3x. *b3x. ♦ 12 0 | 12 12 0 0 0 | 4 4 6 0 0 0 0 0 | 8 * * * * wx3oo3xw ..&#zx ♦ 12 12 | 12 0 12 12 0 | 4 0 0 6 0 4 0 0 | * 8 * * * wx .. xw xx&#zx ♦ 8 8 | 4 4 8 4 4 | 0 0 2 2 4 0 2 0 | * * 24 * * .. oo .. *b3xx&#x ♦ 3 3 | 0 3 3 0 3 | 0 1 0 0 3 0 0 1 | * * * 32 * .x3.o .. *b3.x ♦ 0 12 | 0 0 0 12 12 | 0 0 0 0 0 4 6 4 | * * * * 8
© 2004-2024 | top of page |