Acronym | ... |
Name | squashed hexaconta-sphenated id-first deep parabidiminished rahi |
© | |
Circumradius | ... |
Face vector | 600, 1740, 1488, 348 |
Confer |
This is the squashed version of the hexaconta-sphenated id-first deep parabidiminished rahi (i.e. of xofxF(Vo)Fxfox3xFxoo(xo)ooxFx5xoxFf(oV)fFxox&#xt), obtained by the withdrawel of its medial tetrastratic segment. Locally then some cells have to be rebuilt thereby. This is how bilbiroes occur herein, and how the further dips come in. (This squashing furthermore deletes all the former tet cells.)
It also is related to one of the axial-icosahedrally subsymmetric expanded kaleido-facetings of ex: it happens to be the (monostratic) parabidiminishing of oxofxfoxo3xxFxoxFxx5xxoxFxoxx&#xt.
Incidence matrix according to Dynkin symbol
xofxfox3xFxoxFx5xoxFxox&#xt → height(1,2) = height(3,4) = height(4,5) = height(6,7) = 1/2 (F=ff=x+f) height(2,3) = height(5,6) = (sqrt(5)-1)/4 = 0.309017 o......3o......5o...... & | 240 * * * | 1 1 1 1 1 0 0 0 0 0 0 | 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 | 1 1 1 1 0 0 0 0 .o.....3.o.....5.o..... & | * 60 * * | 0 0 0 4 0 4 0 0 0 0 0 | 0 0 0 2 2 0 0 4 2 2 0 0 0 0 0 0 | 0 2 1 0 2 1 0 0 ..o....3..o....5..o.... & | * * 240 * | 0 0 0 0 1 1 1 1 1 1 0 | 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 | 0 1 0 1 1 1 1 1 ...o...3...o...5...o... | * * * 60 | 0 0 0 0 0 0 0 0 4 0 2 | 0 0 0 0 0 0 0 0 0 2 0 1 0 0 2 1 | 0 1 0 0 0 2 1 0 -------------------------------+---------------+--------------------------------------------+----------------------------------------------------------+------------------------ x...... ....... ....... & | 2 0 0 0 | 120 * * * * * * * * * * | 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | 1 1 1 0 0 0 0 0 ....... x...... ....... & | 2 0 0 0 | * 120 * * * * * * * * * | 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 | 1 1 0 1 0 0 0 0 ....... ....... x...... & | 2 0 0 0 | * * 120 * * * * * * * * | 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 | 1 0 1 1 1 0 0 0 oo.....3oo.....5oo.....&#x & | 1 1 0 0 | * * * 240 * * * * * * * | 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 | 0 1 1 0 1 0 0 0 o.o....3o.o....5o.o....&#x & | 1 0 1 0 | * * * * 240 * * * * * * | 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 | 0 1 0 1 1 0 0 0 .oo....3.oo....5.oo....&#x & | 0 1 1 0 | * * * * * 240 * * * * * | 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 | 0 1 0 0 1 1 0 0 ....... ..x.... ....... & | 0 0 2 0 | * * * * * * 120 * * * * | 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 | 0 1 0 1 0 0 1 1 ....... ....... ..x.... & | 0 0 2 0 | * * * * * * * 120 * * * | 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 | 0 0 0 1 1 1 0 1 ..oo...3..oo...5..oo...&#x & | 0 0 1 1 | * * * * * * * * 240 * * | 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 | 0 1 0 0 0 1 1 0 ..o.o..3..o.o..5..o.o..&#x | 0 0 2 0 | * * * * * * * * * 120 * | 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 | 0 0 0 0 0 1 1 1 ...x... ....... ....... | 0 0 0 2 | * * * * * * * * * * 60 | 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 | 0 2 0 0 0 1 0 0 -------------------------------+---------------+--------------------------------------------+----------------------------------------------------------+------------------------ x......3x...... ....... & | 6 0 0 0 | 3 3 0 0 0 0 0 0 0 0 0 | 40 * * * * * * * * * * * * * * * | 1 1 0 0 0 0 0 0 x...... ....... x...... & | 4 0 0 0 | 2 0 2 0 0 0 0 0 0 0 0 | * 60 * * * * * * * * * * * * * * | 1 0 1 0 0 0 0 0 ....... x......5x...... & | 10 0 0 0 | 0 5 5 0 0 0 0 0 0 0 0 | * * 24 * * * * * * * * * * * * * | 1 0 0 1 0 0 0 0 xo..... ....... .......&#x & | 2 1 0 0 | 1 0 0 2 0 0 0 0 0 0 0 | * * * 120 * * * * * * * * * * * * | 0 1 1 0 0 0 0 0 ....... ....... xo.....&#x & | 2 1 0 0 | 0 0 1 2 0 0 0 0 0 0 0 | * * * * 120 * * * * * * * * * * * | 0 0 1 0 1 0 0 0 ....... x.x.... .......&#x & | 2 0 2 0 | 0 1 0 0 2 0 1 0 0 0 0 | * * * * * 120 * * * * * * * * * * | 0 1 0 1 0 0 0 0 ....... ....... x.x....&#x & | 2 0 2 0 | 0 0 1 0 2 0 0 1 0 0 0 | * * * * * * 120 * * * * * * * * * | 0 0 0 1 1 0 0 0 ooo....3ooo....5ooo....&#x & | 1 1 1 0 | 0 0 0 1 1 1 0 0 0 0 0 | * * * * * * * 240 * * * * * * * * | 0 1 0 0 1 0 0 0 ....... ....... .ox....&#x & | 0 1 2 0 | 0 0 0 0 0 2 0 1 0 0 0 | * * * * * * * * 120 * * * * * * * | 0 0 0 0 1 1 0 0 .ofx... ....... .......&#xt & | 0 1 2 2 | 0 0 0 0 0 2 0 0 2 0 1 | * * * * * * * * * 120 * * * * * * | 0 1 0 0 0 1 0 0 ....... ..x....5..x.... & | 0 0 10 0 | 0 0 0 0 0 0 5 5 0 0 0 | * * * * * * * * * * 24 * * * * * | 0 0 0 1 0 0 0 1 ....... ..xo... .......&#x & | 0 0 2 1 | 0 0 0 0 0 0 1 0 2 0 0 | * * * * * * * * * * * 120 * * * * | 0 1 0 0 0 0 1 0 ....... ..x.x.. .......&#x | 0 0 4 0 | 0 0 0 0 0 0 2 0 0 2 0 | * * * * * * * * * * * * 60 * * * | 0 0 0 0 0 0 1 1 ....... ....... ..x.x..&#x | 0 0 4 0 | 0 0 0 0 0 0 0 2 0 2 0 | * * * * * * * * * * * * * 60 * * | 0 0 0 0 0 1 0 1 ..ooo..3..ooo..5..ooo..&#x | 0 0 2 1 | 0 0 0 0 0 0 0 0 2 1 0 | * * * * * * * * * * * * * * 120 * | 0 0 0 0 0 1 1 0 ...x...3...o... ....... | 0 0 0 3 | 0 0 0 0 0 0 0 0 0 0 3 | * * * * * * * * * * * * * * * 20 | 0 2 0 0 0 0 0 0 -------------------------------+---------------+--------------------------------------------+----------------------------------------------------------+------------------------ x......3x......5x...... & ♦ 120 0 0 0 | 60 60 60 0 0 0 0 0 0 0 0 | 20 30 12 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2 * * * * * * * xofx...3xFxo... .......&#xt & ♦ 6 3 6 3 | 3 3 0 6 6 6 3 0 6 0 3 | 1 0 0 3 0 3 0 6 0 3 0 3 0 0 0 1 | * 40 * * * * * * xo..... ....... xo.....&#x & ♦ 4 1 0 0 | 2 0 2 4 0 0 0 0 0 0 0 | 0 1 0 2 2 0 0 0 0 0 0 0 0 0 0 0 | * * 60 * * * * * ....... x.x....5x.x....&#x & ♦ 10 0 10 0 | 0 5 5 0 10 0 5 5 0 0 0 | 0 0 1 0 0 5 5 0 0 0 1 0 0 0 0 0 | * * * 24 * * * * ....... ....... xox....&#x & ♦ 2 1 2 0 | 0 0 1 2 2 2 0 1 0 0 0 | 0 0 0 0 1 0 1 2 1 0 0 0 0 0 0 0 | * * * * 120 * * * .ofxfo. ....... .oxFxo.&#xt ♦ 0 2 8 4 | 0 0 0 0 0 8 0 4 8 4 2 | 0 0 0 0 0 0 0 0 4 4 0 0 0 2 4 0 | * * * * * 30 * * ....... ..xox.. .......&#x ♦ 0 0 4 1 | 0 0 0 0 0 0 2 0 4 2 0 | 0 0 0 0 0 0 0 0 0 0 0 2 1 0 2 0 | * * * * * * 60 * ....... ..x.x..5..x.x..&#x ♦ 0 0 20 0 | 0 0 0 0 0 0 10 10 0 10 0 | 0 0 0 0 0 0 0 0 0 0 2 0 5 5 0 0 | * * * * * * * 12
© 2004-2025 | top of page |