Acronym cyte opau sodip
Name cyclotetra octagon-prism-augmented sodip
Circumradius ...
Lace city
in approx. ASCII-art
x4o x4x x4o
           
x4x     x4x
           
x4o x4x x4o
    o4x   o4x    
                 
o4x q4o   q4o o4x
                 
                 
o4x q4o   q4o o4x
                 
    o4x   o4x    
Confer
uniform relative:
sodip  
segmentochora:
cubpy  
related CRFs:
bicyte ausodip   cyte cubau sodip  
general polytopal classes:
bistratic lace towers  

This CRF polychoron can be obtained by augmenting a cycle of 4 ops of sodip with squipufs. Note, that pairs of squacues become corealmic, reconnecting to squobcues.


Incidence matrix according to Dynkin symbol

ox4qo ox4xx&#zx   → all heights = 0
(tegum sum of (q,q,x,x)-tes and gyro sodip)

o.4o. o.4o.     | 16  * |  2  4  0  0  0 | 1  2  2  4 0  0  0 |  1  2 2 0 0
.o4.o .o4.o     |  * 32 |  0  2  2  1  1 | 0  2  2  2 1  2  2 |  2  2 1 1 1
----------------+-------+----------------+--------------------+------------
.. .. .. x.     |  2  0 | 16  *  *  *  * | 1  0  0  2 0  0  0 |  0  1 2 0 0
oo4oo oo4oo&#x  |  1  1 |  * 64  *  *  * | 0  1  1  1 0  0  0 |  1  1 1 0 0
.x .. .. ..     |  0  2 |  *  * 32  *  * | 0  1  0  0 1  1  1 |  1  1 0 1 1
.. .. .x ..     |  0  2 |  *  *  * 16  * | 0  0  2  0 0  2  0 |  2  0 1 1 0
.. .. .. .x     |  0  2 |  *  *  *  * 16 | 0  0  0  2 0  0  2 |  0  2 1 0 1
----------------+-------+----------------+--------------------+------------
.. .. o.4x.     |  4  0 |  4  0  0  0  0 | 4  *  *  * *  *  * |  0  0 2 0 0
ox .. .. ..&#x  |  1  2 |  0  2  1  0  0 | * 32  *  * *  *  * |  1  1 0 0 0
.. .. ox ..&#x  |  1  2 |  0  2  0  1  0 | *  * 32  * *  *  * |  1  0 1 0 0
.. .. .. xx&#x  |  2  2 |  1  2  0  0  1 | *  *  * 32 *  *  * |  0  1 1 0 0
.x4.o .. ..     |  0  4 |  0  0  4  0  0 | *  *  *  * 8  *  * |  0  0 0 1 1
.x .. .x ..     |  0  4 |  0  0  2  2  0 | *  *  *  * * 16  * |  1  0 0 1 0
.x .. .. .x     |  0  4 |  0  0  2  0  2 | *  *  *  * *  * 16 |  0  1 0 0 1
----------------+-------+----------------+--------------------+------------
ox .. ox ..&#x    1  4 |  0  4  2  2  0 | 0  2  2  0 0  1  0 | 16  * * * *
ox .. .. xx&#x    2  4 |  1  4  2  0  2 | 0  2  0  2 0  0  1 |  * 16 * * *
.. qo ox4xx&#zx   8  8 |  8 16  0  4  4 | 2  0  8  8 0  0  0 |  *  * 4 * *
.x4.o .x ..       0  8 |  0  0  8  4  0 | 0  0  0  0 2  4  0 |  *  * * 4 *
.x4.o .. .x       0  8 |  0  0  8  0  4 | 0  0  0  0 2  0  4 |  *  * * * 4

(qo)q(qo) (xx)x(xx)4(ox)x(ox)&#xt   → both heights 1/sqrt(2) = 0.707107
(squobcu || pseudo (q,x,x)-op || squobcu)

(o.).(..) (o.).(..)4(o.).(..)     & | 16  *  * |  2  2  2 0 0  0 0 0 | 1  2  1  2  1  2  0  0 0 | 1  2  1 1 0 0
(.o).(..) (.o).(..)4(.o).(..)     & |  * 16  * |  0  2  0 1 1  2 0 0 | 0  2  2  0  0  2  2  2 1 | 1  2  2 0 1 1
(..)o(..) (..)o(..)4(..)o(..)       |  *  * 16 |  0  0  2 0 0  2 1 1 | 0  0  0  2  2  2  2  2 1 | 0  2  2 1 1 1
------------------------------------+----------+---------------------+--------------------------+--------------
(..).(..) (x.).(..) (..).(..)     & |  2  0  0 | 16  *  * * *  * * * | 1  1  0  1  0  0  0  0 0 | 1  1  0 1 0 0
(oo).(..) (oo).(..)4(oo).(..)&#x  & |  1  1  0 |  * 32  * * *  * * * | 0  1  1  0  0  1  0  0 0 | 1  1  1 0 0 0
(o.)o(..) (o.)o(..)4(o.)o(..)&#x  & |  1  0  1 |  *  * 32 * *  * * * | 0  0  0  1  1  1  0  0 0 | 0  1  1 1 0 0
(..).(..) (.x).(..) (..).(..)     & |  0  2  0 |  *  *  * 8 *  * * * | 0  2  0  0  0  0  2  0 0 | 1  2  0 0 1 0
(..).(..) (..).(..) (.x).(..)     & |  0  2  0 |  *  *  * * 8  * * * | 0  0  2  0  0  0  0  2 0 | 1  0  2 0 0 1
(.o)o(..) (.o)o(..)4(.o)o(..)&#x  & |  0  1  1 |  *  *  * * * 32 * * | 0  0  0  0  0  1  1  1 1 | 0  1  1 0 1 1
(..).(..) (..)x(..) (..).(..)       |  0  0  2 |  *  *  * * *  * 8 * | 0  0  0  2  0  0  2  0 0 | 0  2  0 1 1 0
(..).(..) (..).(..) (..)x(..)       |  0  0  2 |  *  *  * * *  * * 8 | 0  0  0  0  2  0  0  2 0 | 0  0  2 1 0 1
------------------------------------+----------+---------------------+--------------------------+--------------
(..).(..) (x.).(..)4(o.).(..)     & |  4  0  0 |  4  0  0 0 0  0 0 0 | 4  *  *  *  *  *  *  * * | 1  0  0 1 0 0
(..).(..) (xx).(..) (..).(..)&#x  & |  2  2  0 |  1  2  0 1 0  0 0 0 | * 16  *  *  *  *  *  * * | 1  1  0 0 0 0
(..).(..) (..).(..) (ox).(..)&#x  & |  1  2  0 |  0  2  0 0 1  0 0 0 | *  * 16  *  *  *  *  * * | 1  0  1 0 0 0
(..).(..) (x.)x(..) (..).(..)&#x  & |  2  0  2 |  1  0  2 0 0  0 1 0 | *  *  * 16  *  *  *  * * | 0  1  0 1 0 0
(..).(..) (..).(..) (o.)x(..)&#x  & |  1  0  2 |  0  0  2 0 0  0 0 1 | *  *  *  * 16  *  *  * * | 0  0  1 1 0 0
(oo)o(..) (oo)o(..)4(oo)o(..)&#x  & |  1  1  1 |  0  1  1 0 0  1 0 0 | *  *  *  *  * 32  *  * * | 0  1  1 0 0 0
(..).(..) (.x)x(..) (..).(..)&#x  & |  0  2  2 |  0  0  0 1 0  2 1 0 | *  *  *  *  *  * 16  * * | 0  1  0 0 1 0
(..).(..) (..).(..) (.x)x(..)&#x  & |  0  2  2 |  0  0  0 0 1  2 0 1 | *  *  *  *  *  *  * 16 * | 0  0  1 0 0 1
(.o)q(.o) (..).(..) (..).(..)&#xt   |  0  2  2 |  0  0  0 0 0  4 0 0 | *  *  *  *  *  *  *  * 8 | 0  0  0 0 1 1
------------------------------------+----------+---------------------+--------------------------+--------------
(qo).(..) (xx).(..)4(ox).(..)&#x  &   8  8  0 |  8 16  0 4 4  0 0 0 | 2  8  8  0  0  0  0  0 0 | 2  *  * * * *
(..).(..) (xx)x(..) (..).(..)&#x  &   2  2  2 |  1  2  2 1 0  2 1 0 | 0  1  0  1  0  2  1  0 0 | * 16  * * * *
(..).(..) (..).(..) (ox)x(..)&#x  &   1  2  2 |  0  2  2 0 1  2 0 1 | 0  0  1  0  1  2  0  1 0 | *  * 16 * * *
(..).(..) (x.)x(x.)4(o.)x(o.)&#xt     8  0  8 |  8  0 16 0 0  0 4 4 | 2  0  0  8  8  0  0  0 0 | *  *  * 2 * *
(.o)q(.o) (.x)x(.x) (..).(..)&#xt     0  4  4 |  0  0  0 2 0  8 2 0 | 0  0  0  0  0  0  4  0 2 | *  *  * * 4 *
(.o)q(.o) (..).(..) (.x)x(.x)&#xt     0  4  4 |  0  0  0 0 2  8 0 2 | 0  0  0  0  0  0  0  4 2 | *  *  * * * 4

© 2004-2018
top of page