Acronym ...
Name ((oxqw wxwx3ooxx4qwox))&#zx
Face vector 216, 600, 488, 104
Confer
uniform relative:
spic  
related CRFs:
((oxqwQ wxwxx3ooxxx4qwoxo))&#zx  
general polytopal classes:
expanded kaleido-facetings  

The relation to spic runs as follows: spic in demitessic subsymmetry can be given as ((oxqwQ 2 qowxx 3 xxooo 4 oxoxo))&#zx. That will be transformed into ((oxqwQ 2 wowxx 3 (-x)xooo 4 qxoxo))&#zx (faceting, same vertex set). This in turn will be transformed into ((oxqwQ 2 wxwxx 3 (-x)(-x)ooo 4 qwoxo))&#zx (other faceting, still same vertex set). Then a Stott expansion wrt. the third node produces ((oxqwQ wxwxx3ooxxx4qwoxo))&#zx. This polychoron then is the monostratic parabidiminishing therefrom wrt. its axial direction.

Alternatively these processes could be commutated here: starting from the accordingly parabidiminished version of spic the relevant part of that EKF construction could be applied thereon, which then reproduces this polychoron alike.

Here: Q=w+x=q+u.


Incidence matrix according to Dynkin symbol

((oxqw wxwx3ooxx4qwox))&#zx   → all existing heights = 0

  o... o...3o...4o...       | 24  *  *  * |  2  4  0  0  0  0  0  0  0  0 |  1  2  2  4  0  0  0  0  0  0  0  0  0  0 |  2 1  2 0  0  0 0
  .o.. .o..3.o..4.o..       |  * 48  *  * |  1  0  1  2  2  0  0  0  0  0 |  1  0  0  2  2  1  2  1  0  0  0  0  0  0 |  2 0  1 1  1  0 0
  ..o. ..o.3..o.4..o.       |  *  * 48  * |  0  2  0  0  0  2  2  0  0  0 |  0  2  1  2  0  0  0  0  1  2  1  0  0  0 |  1 1  2 0  0  1 0
  ...o ...o3...o4...o       |  *  *  * 96 |  0  0  0  0  1  0  1  1  1  1 |  0  0  0  1  0  0  1  1  0  1  1  1  1  1 |  1 0  1 0  1  1 1
----------------------------+-------------+-------------------------------+-------------------------------------------+------------------
  oo.. oo..3oo..4oo..  &#x  |  1  1  0  0 | 48  *  *  *  *  *  *  *  *  * |  1  0  0  2  0  0  0  0  0  0  0  0  0  0 |  2 0  1 0  0  0 0
  o.o. o.o.3o.o.4o.o.  &#x  |  1  0  1  0 |  * 96  *  *  *  *  *  *  *  * |  0  1  1  1  0  0  0  0  0  0  0  0  0  0 |  1 1  1 0  0  0 0
  .x.. .... .... ....       |  0  2  0  0 |  *  * 24  *  *  *  *  *  *  * |  1  0  0  0  2  0  0  0  0  0  0  0  0  0 |  2 0  0 1  0  0 0
  .... .x.. .... ....       |  0  2  0  0 |  *  *  * 48  *  *  *  *  *  * |  0  0  0  0  1  1  1  0  0  0  0  0  0  0 |  1 0  0 1  1  0 0
  .o.o .o.o3.o.o4.o.o  &#x  |  0  1  0  1 |  *  *  *  * 96  *  *  *  *  * |  0  0  0  1  0  0  1  1  0  0  0  0  0  0 |  1 0  1 0  1  0 0
  .... .... ..x. ....       |  0  0  2  0 |  *  *  *  *  * 48  *  *  *  * |  0  1  0  0  0  0  0  0  1  1  0  0  0  0 |  0 1  1 0  0  1 0
  ..oo ..oo3..oo4..oo  &#x  |  0  0  1  1 |  *  *  *  *  *  * 96  *  *  * |  0  0  0  1  0  0  0  0  0  1  1  0  0  0 |  1 0  1 0  0  1 0
  .... ...x .... ....       |  0  0  0  2 |  *  *  *  *  *  *  * 48  *  * |  0  0  0  0  0  0  1  0  0  0  0  1  1  0 |  1 0  0 0  1  0 1
  .... .... ...x ....       |  0  0  0  2 |  *  *  *  *  *  *  *  * 48  * |  0  0  0  0  0  0  0  1  0  1  0  1  0  1 |  0 0  1 0  1  1 1
  .... .... .... ...x       |  0  0  0  2 |  *  *  *  *  *  *  *  *  * 48 |  0  0  0  0  0  0  0  0  0  0  1  0  1  1 |  1 0  0 0  0  1 1
----------------------------+-------------+-------------------------------+-------------------------------------------+------------------
  ox.. .... .... ....  &#x  |  1  2  0  0 |  2  0  1  0  0  0  0  0  0  0 | 24  *  *  *  *  *  *  *  *  *  *  *  *  * |  2 0  0 0  0  0 0
  .... .... o.x. ....  &#x  |  1  0  2  0 |  0  2  0  0  0  1  0  0  0  0 |  * 48  *  *  *  *  *  *  *  *  *  *  *  * |  0 1  1 0  0  0 0
((o.q. .... .... q.o.))&#zx |  2  0  2  0 |  0  4  0  0  0  0  0  0  0  0 |  *  * 24  *  *  *  *  *  *  *  *  *  *  * |  1 1  0 0  0  0 0
  oooo oooo3oooo4oooo  &#xr |  1  1  1  1 |  1  1  0  0  1  0  1  0  0  0 |  *  *  * 96  *  *  *  *  *  *  *  *  *  * |  1 0  1 0  0  0 0  cycle: (ABDC)
  .x.. .x.. .... ....       |  0  4  0  0 |  0  0  2  2  0  0  0  0  0  0 |  *  *  *  * 24  *  *  *  *  *  *  *  *  * |  1 0  0 1  0  0 0
  .... .x..3.o.. ....       |  0  3  0  0 |  0  0  0  3  0  0  0  0  0  0 |  *  *  *  *  * 16  *  *  *  *  *  *  *  * |  0 0  0 1  1  0 0
  .... .x.x .... ....  &#x  |  0  2  0  2 |  0  0  0  1  2  0  0  1  0  0 |  *  *  *  *  *  * 48  *  *  *  *  *  *  * |  1 0  0 0  1  0 0
  .... .... .o.x ....  &#x  |  0  1  0  2 |  0  0  0  0  2  0  0  0  1  0 |  *  *  *  *  *  *  * 48  *  *  *  *  *  * |  0 0  1 0  1  0 0
  .... .... ..x.4..o.       |  0  0  4  0 |  0  0  0  0  0  4  0  0  0  0 |  *  *  *  *  *  *  *  * 12  *  *  *  *  * |  0 1  0 0  0  1 0
  .... .... ..xx ....  &#x  |  0  0  2  2 |  0  0  0  0  0  1  2  0  1  0 |  *  *  *  *  *  *  *  *  * 48  *  *  *  * |  0 0  1 0  0  1 0
  .... .... .... ..ox  &#x  |  0  0  1  2 |  0  0  0  0  0  0  2  0  0  1 |  *  *  *  *  *  *  *  *  *  * 48  *  *  * |  1 0  0 0  0  1 0
  .... ...x3...x ....       |  0  0  0  6 |  0  0  0  0  0  0  0  3  3  0 |  *  *  *  *  *  *  *  *  *  *  * 16  *  * |  0 0  0 0  1  0 1
  .... ...x .... ...x       |  0  0  0  4 |  0  0  0  0  0  0  0  2  0  2 |  *  *  *  *  *  *  *  *  *  *  *  * 24  * |  1 0  0 0  0  0 1
  .... .... ...x4...x       |  0  0  0  8 |  0  0  0  0  0  0  0  0  4  4 |  *  *  *  *  *  *  *  *  *  *  *  *  * 12 |  0 0  0 0  0  1 1
----------------------------+-------------+-------------------------------+-------------------------------------------+------------------
((oxqw wxwx .... qwox))&#zx   4  8  4  8 |  8  8  4  4  8  0  8  4  0  4 |  4  0  2  8  2  0  4  0  0  0  4  0  2  0 | 12 *  * *  *  * *
((o.q. .... o.x.4q.o.))&#zx   4  0  8  0 |  0 16  0  0  0  8  0  0  0  0 |  0  8  4  0  0  0  0  0  2  0  0  0  0  0 |  * 6  * *  *  * *
  .... .... ooxx ....  &#xr   1  1  2  2 |  1  2  0  0  2  1  2  0  1  0 |  0  1  0  2  0  0  0  1  0  1  0  0  0  0 |  * * 48 *  *  * *  cycle: (ABDC)
  .x.. .x..3.o.. ....         0  6  0  0 |  0  0  3  6  0  0  0  0  0  0 |  0  0  0  0  3  2  0  0  0  0  0  0  0  0 |  * *  * 8  *  * *
  .... .x.x3.o.x ....  &#x    0  3  0  6 |  0  0  0  3  6  0  0  3  3  0 |  0  0  0  0  0  1  3  3  0  0  0  1  0  0 |  * *  * * 16  * *
  .... .... ..xx4..ox  &#x    0  0  4  8 |  0  0  0  0  0  4  8  0  4  4 |  0  0  0  0  0  0  0  0  1  4  4  0  0  1 |  * *  * *  * 12 *
  .... ...x3...x4...x         0  0  0 48 |  0  0  0  0  0  0  0 24 24 24 |  0  0  0  0  0  0  0  0  0  0  0  8 12  6 |  * *  * *  *  * 2

© 2004-2026
top of page