| Acronym | ... |
| Name | xoofoox3ofxoxfo5xoxxxox&#xt |
| Face vector | 360, 1140, 1046, 266 |
| Confer |
|
The relation to ex runs as follows: ex in axial icosahedral subsymmetry can be given as VFfxo2oxofo3oooox5ooxoo&#zx = oxofofoxo3ooooxoooo5ooxoooxoo&#xt (F = ff = f+x, V = uf = f+f). That will be transformed into VFfxo2oxofo3oofox5oo(-x)oo&#zx. And finally into VFf(-x)o2oxofo3oofox5oo(-x)oo&#zx. Then a Stott expansion wrt. the first and fourth nodes produces oxoofooxo3oofxoxfoo5xxoxxxoxx&xt. This polychoron will be the monostratic parabdiminishing therefrom.
Incidence matrix according to Dynkin symbol
xoofoox3ofxoxfo5xoxxxox&#xt → height(1,2) = height(3,4) = height(4,5) = height(7,8) = 1/2
height(2,3) = height(5,6) = (1+sqrt(5))/4 = 0.809017
(srid || pseudo f-id || pseudo tid || pseudo (f,x)-srid || pseudo tid || pseudo f-id || srid)
o......3o......5o...... & | 120 * * * | 2 2 2 0 0 0 0 0 0 | 1 2 1 2 1 2 0 0 0 0 0 0 0 0 | 1 1 2 1 0 0 0
.o.....3.o.....5.o..... & | * 60 * * | 0 0 4 2 0 0 0 0 0 | 0 0 0 2 4 2 1 0 0 0 0 0 0 0 | 0 2 1 2 0 0 0
..o....3..o....5..o.... & | * * 120 * | 0 0 0 1 2 1 2 1 0 | 0 0 0 0 2 0 1 1 2 2 2 1 2 0 | 0 1 0 2 1 2 2
...o...3...o...5...o... | * * * 60 | 0 0 0 0 0 0 4 0 2 | 0 0 0 0 0 0 0 0 2 4 0 0 2 1 | 0 0 0 2 0 1 2
------------------------------+---------------+----------------------------------+-------------------------------------------------+--------------------
x...... ....... ....... & | 2 0 0 0 | 120 * * * * * * * * | 1 1 0 1 0 0 0 0 0 0 0 0 0 0 | 1 1 1 0 0 0 0
....... ....... x...... & | 2 0 0 0 | * 120 * * * * * * * | 0 1 1 0 0 1 0 0 0 0 0 0 0 0 | 1 0 1 1 0 0 0
oo.....3oo.....5oo.....&#x & | 1 1 0 0 | * * 240 * * * * * * | 0 0 0 1 1 1 0 0 0 0 0 0 0 0 | 0 1 1 1 0 0 0
.oo....3.oo....5.oo....&#x & | 0 1 1 0 | * * * 120 * * * * * | 0 0 0 0 2 0 1 0 0 0 0 0 0 0 | 0 1 0 2 0 0 0
....... ..x.... ....... & | 0 0 2 0 | * * * * 120 * * * * | 0 0 0 0 1 0 0 1 1 0 1 0 0 0 | 0 1 0 1 1 1 0
....... ....... ..x.... & | 0 0 2 0 | * * * * * 60 * * * | 0 0 0 0 0 0 1 0 0 2 0 1 0 0 | 0 0 0 2 0 0 2
..oo...3..oo...5..oo...&#x & | 0 0 1 1 | * * * * * * 240 * * | 0 0 0 0 0 0 0 0 1 1 0 0 1 0 | 0 0 0 1 0 1 1
..o.o..3..o.o..5..o.o..&#x | 0 0 2 0 | * * * * * * * 60 * | 0 0 0 0 0 0 0 0 0 0 2 1 2 0 | 0 0 0 0 1 2 2
....... ....... ...x... | 0 0 0 2 | * * * * * * * * 60 | 0 0 0 0 0 0 0 0 0 2 0 0 0 1 | 0 0 0 2 0 0 1
------------------------------+---------------+----------------------------------+-------------------------------------------------+--------------------
x......3o...... ....... & | 3 0 0 0 | 3 0 0 0 0 0 0 0 0 | 40 * * * * * * * * * * * * * | 1 1 0 0 0 0 0
x...... ....... x...... & | 4 0 0 0 | 2 2 0 0 0 0 0 0 0 | * 60 * * * * * * * * * * * * | 1 0 1 0 0 0 0
....... o......5x...... & | 5 0 0 0 | 0 5 0 0 0 0 0 0 0 | * * 24 * * * * * * * * * * * | 1 0 0 1 0 0 0
xo..... ....... .......&#x & | 2 1 0 0 | 1 0 2 0 0 0 0 0 0 | * * * 120 * * * * * * * * * * | 0 1 1 0 0 0 0
....... ofx.... .......&#x & | 1 2 2 0 | 0 0 2 2 1 0 0 0 0 | * * * * 120 * * * * * * * * * | 0 1 0 1 0 0 0
....... ....... xo.....&#x & | 2 1 0 0 | 0 1 2 0 0 0 0 0 0 | * * * * * 120 * * * * * * * * | 0 0 1 1 0 0 0
....... ....... .ox....&#x & | 0 1 2 0 | 0 0 0 2 0 1 0 0 0 | * * * * * * 60 * * * * * * * | 0 0 0 2 0 0 0
..o....3..x.... .......&#x & | 0 0 3 0 | 0 0 0 0 3 0 0 0 0 | * * * * * * * 40 * * * * * * | 0 1 0 0 1 0 0
....... ..xo... .......&#x & | 0 0 2 1 | 0 0 0 0 1 0 2 0 0 | * * * * * * * * 120 * * * * * | 0 0 0 1 0 1 0
....... ....... ..xx...&#x & | 0 0 2 2 | 0 0 0 0 0 1 2 0 1 | * * * * * * * * * 120 * * * * | 0 0 0 1 0 0 1
....... ..x.x.. .......&#x | 0 0 4 0 | 0 0 0 0 2 0 0 2 0 | * * * * * * * * * * 60 * * * | 0 0 0 0 1 1 0
....... ....... ..x.x..&#x | 0 0 4 0 | 0 0 0 0 0 2 0 2 0 | * * * * * * * * * * * 30 * * | 0 0 0 0 0 0 2
..ooo..3..ooo..5..ooo..&#x | 0 0 2 1 | 0 0 0 0 0 0 2 1 0 | * * * * * * * * * * * * 120 * | 0 0 0 0 0 1 1
....... ...o...5...x... | 0 0 0 5 | 0 0 0 0 0 0 0 0 5 | * * * * * * * * * * * * * 12 | 0 0 0 2 0 0 0
------------------------------+---------------+----------------------------------+-------------------------------------------------+--------------------
x......3o......5x...... & ♦ 60 0 0 0 | 60 60 0 0 0 0 0 0 0 | 20 30 12 0 0 0 0 0 0 0 0 0 0 0 | 2 * * * * * *
xoo....3ofx.... .......&#xt & ♦ 3 3 3 0 | 3 0 6 3 3 0 0 0 0 | 1 0 0 3 3 0 0 1 0 0 0 0 0 0 | * 40 * * * * *
xo..... ....... xo.....&#x & ♦ 4 1 0 0 | 2 2 4 0 0 0 0 0 0 | 0 1 0 2 0 2 0 0 0 0 0 0 0 0 | * * 60 * * * *
....... ofxo...5xoxx...&#xt & ♦ 5 5 10 5 | 0 5 10 10 5 5 10 0 5 | 0 0 1 0 5 5 5 0 5 5 0 0 0 1 | * * * 24 * * *
..o.o..3..x.x.. .......&#x ♦ 0 0 6 0 | 0 0 0 0 6 0 0 3 0 | 0 0 0 0 0 0 0 2 0 0 3 0 0 0 | * * * * 20 * *
....... ..xox.. .......&#x ♦ 0 0 4 1 | 0 0 0 0 2 0 4 2 0 | 0 0 0 0 0 0 0 0 2 0 1 0 2 0 | * * * * * 60 *
....... ....... ..xxx..&#x ♦ 0 0 4 2 | 0 0 0 0 0 2 4 2 1 | 0 0 0 0 0 0 0 0 0 2 0 1 2 0 | * * * * * * 60
© 2004-2025 | top of page |