Acronym ... Name xoofoox3ofxoxfo5xoxxxox&#xt Confer uniform relative: ex   related segmentochora: doe || srid   related CRFs: twau tiddip   oxoofooxo3oofxoxfoo5xxoxxxoxx&xt   general polytopal classes: expanded kaleido-facetings

The relation to ex runs as follows: ex in axial icosahedral subsymmetry can be given as VFfxo2oxofo3oooox5ooxoo&#zx = oxofofoxo3ooooxoooo5ooxoooxoo&#xt (F = ff = f+x, V = uf = f+f). That will be transformed into VFfxo2oxofo3oofox5oo(-x)oo&#zx. And finally into VFf(-x)o2oxofo3oofox5oo(-x)oo&#zx. Then a Stott expansion wrt. the first and fourth nodes produces oxoofooxo3oofxoxfoo5xxoxxxoxx&xt. This polychoron will be the monostratic parabdiminishing therefrom.

Incidence matrix according to Dynkin symbol

```xoofoox3ofxoxfo5xoxxxox&#xt   → height(1,2) = height(3,4) = height(4,5) = height(7,8) = 1/2
height(2,3) = height(5,6) = (1+sqrt(5))/4 = 0.809017
(srid || pseudo f-id || pseudo tid || pseudo (f,x)-srid || pseudo tid || pseudo f-id || srid)

o......3o......5o......     & | 120  *   *  * |   2   2   2   0   0  0   0  0  0 |  1  2  1   2   1   2  0  0   0   0  0  0   0  0 | 1  1  2  1  0  0  0
.o.....3.o.....5.o.....     & |   * 60   *  * |   0   0   4   2   0  0   0  0  0 |  0  0  0   2   4   2  1  0   0   0  0  0   0  0 | 0  2  1  2  0  0  0
..o....3..o....5..o....     & |   *  * 120  * |   0   0   0   1   2  1   2  1  0 |  0  0  0   0   2   0  1  1   2   2  2  1   2  0 | 0  1  0  2  1  2  2
...o...3...o...5...o...       |   *  *   * 60 |   0   0   0   0   0  0   4  0  2 |  0  0  0   0   0   0  0  0   2   4  0  0   2  1 | 0  0  0  2  0  1  2
------------------------------+---------------+----------------------------------+-------------------------------------------------+--------------------
x...... ....... .......     & |   2  0   0  0 | 120   *   *   *   *  *   *  *  * |  1  1  0   1   0   0  0  0   0   0  0  0   0  0 | 1  1  1  0  0  0  0
....... ....... x......     & |   2  0   0  0 |   * 120   *   *   *  *   *  *  * |  0  1  1   0   0   1  0  0   0   0  0  0   0  0 | 1  0  1  1  0  0  0
oo.....3oo.....5oo.....&#x  & |   1  1   0  0 |   *   * 240   *   *  *   *  *  * |  0  0  0   1   1   1  0  0   0   0  0  0   0  0 | 0  1  1  1  0  0  0
.oo....3.oo....5.oo....&#x  & |   0  1   1  0 |   *   *   * 120   *  *   *  *  * |  0  0  0   0   2   0  1  0   0   0  0  0   0  0 | 0  1  0  2  0  0  0
....... ..x.... .......     & |   0  0   2  0 |   *   *   *   * 120  *   *  *  * |  0  0  0   0   1   0  0  1   1   0  1  0   0  0 | 0  1  0  1  1  1  0
....... ....... ..x....     & |   0  0   2  0 |   *   *   *   *   * 60   *  *  * |  0  0  0   0   0   0  1  0   0   2  0  1   0  0 | 0  0  0  2  0  0  2
..oo...3..oo...5..oo...&#x  & |   0  0   1  1 |   *   *   *   *   *  * 240  *  * |  0  0  0   0   0   0  0  0   1   1  0  0   1  0 | 0  0  0  1  0  1  1
..o.o..3..o.o..5..o.o..&#x    |   0  0   2  0 |   *   *   *   *   *  *   * 60  * |  0  0  0   0   0   0  0  0   0   0  2  1   2  0 | 0  0  0  0  1  2  2
....... ....... ...x...       |   0  0   0  2 |   *   *   *   *   *  *   *  * 60 |  0  0  0   0   0   0  0  0   0   2  0  0   0  1 | 0  0  0  2  0  0  1
------------------------------+---------------+----------------------------------+-------------------------------------------------+--------------------
x......3o...... .......     & |   3  0   0  0 |   3   0   0   0   0  0   0  0  0 | 40  *  *   *   *   *  *  *   *   *  *  *   *  * | 1  1  0  0  0  0  0
x...... ....... x......     & |   4  0   0  0 |   2   2   0   0   0  0   0  0  0 |  * 60  *   *   *   *  *  *   *   *  *  *   *  * | 1  0  1  0  0  0  0
....... o......5x......     & |   5  0   0  0 |   0   5   0   0   0  0   0  0  0 |  *  * 24   *   *   *  *  *   *   *  *  *   *  * | 1  0  0  1  0  0  0
xo..... ....... .......&#x  & |   2  1   0  0 |   1   0   2   0   0  0   0  0  0 |  *  *  * 120   *   *  *  *   *   *  *  *   *  * | 0  1  1  0  0  0  0
....... ofx.... .......&#x  & |   1  2   2  0 |   0   0   2   2   1  0   0  0  0 |  *  *  *   * 120   *  *  *   *   *  *  *   *  * | 0  1  0  1  0  0  0
....... ....... xo.....&#x  & |   2  1   0  0 |   0   1   2   0   0  0   0  0  0 |  *  *  *   *   * 120  *  *   *   *  *  *   *  * | 0  0  1  1  0  0  0
....... ....... .ox....&#x  & |   0  1   2  0 |   0   0   0   2   0  1   0  0  0 |  *  *  *   *   *   * 60  *   *   *  *  *   *  * | 0  0  0  2  0  0  0
..o....3..x.... .......&#x  & |   0  0   3  0 |   0   0   0   0   3  0   0  0  0 |  *  *  *   *   *   *  * 40   *   *  *  *   *  * | 0  1  0  0  1  0  0
....... ..xo... .......&#x  & |   0  0   2  1 |   0   0   0   0   1  0   2  0  0 |  *  *  *   *   *   *  *  * 120   *  *  *   *  * | 0  0  0  1  0  1  0
....... ....... ..xx...&#x  & |   0  0   2  2 |   0   0   0   0   0  1   2  0  1 |  *  *  *   *   *   *  *  *   * 120  *  *   *  * | 0  0  0  1  0  0  1
....... ..x.x.. .......&#x    |   0  0   4  0 |   0   0   0   0   2  0   0  2  0 |  *  *  *   *   *   *  *  *   *   * 60  *   *  * | 0  0  0  0  1  1  0
....... ....... ..x.x..&#x    |   0  0   4  0 |   0   0   0   0   0  2   0  2  0 |  *  *  *   *   *   *  *  *   *   *  * 30   *  * | 0  0  0  0  0  0  2
..ooo..3..ooo..5..ooo..&#x    |   0  0   2  1 |   0   0   0   0   0  0   2  1  0 |  *  *  *   *   *   *  *  *   *   *  *  * 120  * | 0  0  0  0  0  1  1
....... ...o...5...x...       |   0  0   0  5 |   0   0   0   0   0  0   0  0  5 |  *  *  *   *   *   *  *  *   *   *  *  *   * 12 | 0  0  0  2  0  0  0
------------------------------+---------------+----------------------------------+-------------------------------------------------+--------------------
x......3o......5x......     & ♦  60  0   0  0 |  60  60   0   0   0  0   0  0  0 | 20 30 12   0   0   0  0  0   0   0  0  0   0  0 | 2  *  *  *  *  *  *
xoo....3ofx.... .......&#xt & ♦   3  3   3  0 |   3   0   6   3   3  0   0  0  0 |  1  0  0   3   3   0  0  1   0   0  0  0   0  0 | * 40  *  *  *  *  *
xo..... ....... xo.....&#x  & ♦   4  1   0  0 |   2   2   4   0   0  0   0  0  0 |  0  1  0   2   0   2  0  0   0   0  0  0   0  0 | *  * 60  *  *  *  *
....... ofxo...5xoxx...&#xt & ♦   5  5  10  5 |   0   5  10  10   5  5  10  0  5 |  0  0  1   0   5   5  5  0   5   5  0  0   0  1 | *  *  * 24  *  *  *
..o.o..3..x.x.. .......&#x    ♦   0  0   6  0 |   0   0   0   0   6  0   0  3  0 |  0  0  0   0   0   0  0  2   0   0  3  0   0  0 | *  *  *  * 20  *  *
....... ..xox.. .......&#x    ♦   0  0   4  1 |   0   0   0   0   2  0   4  2  0 |  0  0  0   0   0   0  0  0   2   0  1  0   2  0 | *  *  *  *  * 60  *
....... ....... ..xxx..&#x    ♦   0  0   4  2 |   0   0   0   0   0  2   4  2  1 |  0  0  0   0   0   0  0  0   0   2  0  1   2  0 | *  *  *  *  *  * 60
```