Acronym twau tiddip
Name twelve-(ortho-)augmented truncated-icosidodecahedral prism
Confer
blend-components:
tiddip   pepuf  
related CRFs:
oxoofooxo3oofxoxfoo5xxoxxxoxx&#xt   twagy tiddip  
general polytopal classes:
bistratic lace towers  

For this polychoron the augmentations of the dips of tiddip by pepufs is to be done in this orientation ("ortho") that the trips of pepuf pairwise adjoin to each other back to back. – There is a different orientation of the pepufs as well ("gyro"), using then the squippies to adjoin pairwise back to back. This then would result in twagy tiddip.


Incidence matrix according to Dynkin symbol

ofo3xox5xxx&#xt   → both heights = 1/2
(tid || pseudo (f,x)-srid || tid)

o..3o..5o..     & | 120  * |   2  1   2  1  0 |  1  2   2   2  2  1   2  0 | 1  2  1  2  2
.o.3.o.5.o.       |   * 60 |   0  0   4  0  2 |  0  0   2   4  0  0   2  1 | 0  2  0  1  2
------------------+--------+------------------+----------------------------+--------------
... x.. ...     & |   2  0 | 120  *   *  *  * |  1  1   1   0  1  0   0  0 | 1  1  1  1  0
... ... x..     & |   2  0 |   * 60   *  *  * |  0  2   0   2  0  1   0  0 | 1  2  0  0  2
oo.3oo.5oo.&#x  & |   1  1 |   *  * 240  *  * |  0  0   1   1  0  0   1  0 | 0  1  0  1  1
o.o3o.o5o.o&#x    |   2  0 |   *  *   * 60  * |  0  0   0   0  2  1   2  0 | 0  0  1  2  2
... ... .x.       |   0  2 |   *  *   *  * 60 |  0  0   0   2  0  0   0  1 | 0  2  0  0  1
------------------+--------+------------------+----------------------------+--------------
o..3x.. ...     & |   3  0 |   3  0   0  0  0 | 40  *   *   *  *  *   *  * | 1  0  1  0  0
... x..5x..     & |  10  0 |   5  5   0  0  0 |  * 24   *   *  *  *   *  * | 1  1  0  0  0
... xo. ...&#x  & |   2  1 |   1  0   2  0  0 |  *  * 120   *  *  *   *  * | 0  1  0  1  0
... ... xx.&#x  & |   2  2 |   0  1   2  0  1 |  *  *   * 120  *  *   *  * | 0  1  0  0  1
... x.x ...&#x    |   4  0 |   2  0   0  2  0 |  *  *   *   * 60  *   *  * | 0  0  1  1  0
... ... x.x&#x    |   4  0 |   0  2   0  2  0 |  *  *   *   *  * 30   *  * | 0  0  0  0  2
ooo3ooo5ooo&#x    |   2  1 |   0  0   2  1  0 |  *  *   *   *  *  * 120  * | 0  0  0  1  1
... .o.5.x.       |   0  5 |   0  0   0  0  5 |  *  *   *   *  *  *   * 12 | 0  2  0  0  0
------------------+--------+------------------+----------------------------+--------------
o..3x..5x..     &   60  0 |  60 30   0  0  0 | 20 12   0   0  0  0   0  0 | 2  *  *  *  *
... xo.5xx.&#x  &   10  5 |   5  5  10  0  5 |  0  1   5   5  0  0   0  1 | * 24  *  *  *
o.o3x.x ...&#x       6  0 |   6  0   0  3  0 |  2  0   0   0  3  0   0  0 | *  * 20  *  *
... xox ...&#x       4  1 |   2  0   4  2  0 |  0  0   2   0  1  0   2  0 | *  *  * 60  *
... ... xxx&#x       4  2 |   0  2   4  2  1 |  0  0   0   2  0  1   2  0 | *  *  *  * 60

of3xo5xx xo&#zx   → height = 0
(tegum sum of tiddip and (f,x)-srid)

o.3o.5o. o.    | 120  * |   2  1  1   2  0 |  1  2  2  1   2   2   2  0 | 1  1  2  2  2
.o3.o5.o .o    |   * 60 |   0  0  0   4  2 |  0  0  0  0   2   4   2  1 | 0  0  2  1  2
---------------+--------+------------------+----------------------------+--------------
.. x. .. ..    |   2  0 | 120  *  *   *  * |  1  1  1  0   1   0   0  0 | 1  1  1  1  0
.. .. x. ..    |   2  0 |   * 60  *   *  * |  0  2  0  1   0   2   0  0 | 1  0  2  0  2
.. .. .. x.    |   2  0 |   *  * 60   *  * |  0  0  2  1   0   0   2  0 | 0  1  0  2  2
oo3oo5oo oo&#x |   1  1 |   *  *  * 240  * |  0  0  0  0   1   1   1  0 | 0  0  1  1  1
.. .. .x ..    |   0  2 |   *  *  *   * 60 |  0  0  0  0   0   2   0  1 | 0  0  2  0  1
---------------+--------+------------------+----------------------------+--------------
o.3x. .. ..    |   3  0 |   3  0  0   0  0 | 40  *  *  *   *   *   *  * | 1  1  0  0  0
.. x.5x. ..    |  10  0 |   5  5  0   0  0 |  * 24  *  *   *   *   *  * | 1  0  1  0  0
.. x. .. x.    |   4  0 |   2  0  2   0  0 |  *  * 60  *   *   *   *  * | 0  1  0  1  0
.. .. x. x.    |   4  0 |   0  2  2   0  0 |  *  *  * 30   *   *   *  * | 0  0  0  0  2
.. xo .. ..&#x |   2  1 |   1  0  0   2  0 |  *  *  *  * 120   *   *  * | 0  0  1  1  0
.. .. xx ..&#x |   2  2 |   0  1  0   2  1 |  *  *  *  *   * 120   *  * | 0  0  1  0  1
.. .. .. xo&#x |   2  1 |   0  0  1   2  0 |  *  *  *  *   *   * 120  * | 0  0  0  1  1
.. .o5.x ..    |   0  5 |   0  0  0   0  5 |  *  *  *  *   *   *   * 12 | 0  0  2  0  0
---------------+--------+------------------+----------------------------+--------------
o.3x.5x. ..      60  0 |  60 30  0   0  0 | 20 12  0  0   0   0   0  0 | 2  *  *  *  *
o.3x. .. x.       6  0 |   6  0  3   0  0 |  2  0  3  0   0   0   0  0 | * 20  *  *  *
.. xo5xx ..&#x   10  5 |   5  5  0  10  5 |  0  1  0  0   5   5   0  1 | *  * 24  *  *
.. xo .. xo&#x    4  1 |   2  0  2   4  0 |  0  0  1  0   2   0   2  0 | *  *  * 60  *
.. .. xx xo&#x    4  2 |   0  2  2   4  1 |  0  0  0  1   0   2   2  0 | *  *  *  * 60

© 2004-2018
top of page