Acronym | ... |
Name | oxoofooxo3oofxoxfoo5xxoxxxoxx&#xt |
Face vector | 400, 1320, 1310, 390 |
Confer |
|
The relation to ex runs as follows: ex in axial icosahedral subsymmetry can be given as VFfxo2oxofo3oooox5ooxoo&#zx = oxofofoxo3ooooxoooo5ooxoooxoo&#xt (F = ff = f+x, V = uf = f+f). That will be transformed into VFfxo2oxofo3oofox5oo(-x)oo&#zx. And finally into VFf(-x)o2oxofo3oofox5oo(-x)oo&#zx. Then a Stott expansion wrt. the first and fourth nodes produces this polychoron.
Incidence matrix according to Dynkin symbol
oxoofooxo3oofxoxfoo5xxoxxxoxx&#xt → height(1,2) = height(8,9) = (sqrt(5)-1)/4 = 0.309017 height(2,3) = height(4,5) = height(5,6) = height(7,8) = 1/2 height(3,4) = height(6,7) = (1+sqrt(5))/4 = 0.809017 (doe || pseudo srid || pseudo f-id || pseudo tid || pseudo (f,x)-srid || pseudo tid || pseudo f-id || pseudo srid || doe) o........3o........5o........ & | 40 * * * * | 3 3 0 0 0 0 0 0 0 0 0 | 3 3 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 1 3 3 0 0 0 0 0 0 .o.......3.o.......5.o....... & | * 120 * * * | 0 1 2 2 2 0 0 0 0 0 0 | 0 2 2 1 2 1 2 1 2 0 0 0 0 0 0 0 0 | 0 1 2 1 1 2 1 0 0 0 ..o......3..o......5..o...... & | * * 60 * * | 0 0 0 0 4 2 0 0 0 0 0 | 0 0 0 0 0 0 2 4 2 1 0 0 0 0 0 0 0 | 0 0 0 0 2 1 2 0 0 0 ...o.....3...o.....5...o..... & | * * * 120 * | 0 0 0 0 0 1 2 1 2 1 0 | 0 0 0 0 0 0 0 2 0 1 1 2 2 2 1 2 0 | 0 0 0 0 1 0 2 1 2 2 ....o....3....o....5....o.... | * * * * 60 | 0 0 0 0 0 0 0 0 4 0 2 | 0 0 0 0 0 0 0 0 0 0 0 2 4 0 0 2 1 | 0 0 0 0 0 0 2 0 1 2 ------------------------------------+------------------+-----------------------------------------+------------------------------------------------------------+----------------------------- ......... ......... ........x & | 2 0 0 0 0 | 60 * * * * * * * * * * | 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 0 1 2 0 0 0 0 0 0 oo.......3oo.......5oo.......&#x & | 1 1 0 0 0 | * 120 * * * * * * * * * | 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 1 2 1 0 0 0 0 0 0 .x....... ......... ......... & | 0 2 0 0 0 | * * 120 * * * * * * * * | 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 | 0 1 1 0 1 1 0 0 0 0 ......... ......... .x....... & | 0 2 0 0 0 | * * * 120 * * * * * * * | 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 | 0 0 1 1 0 1 1 0 0 0 .oo......3.oo......5.oo......&#x & | 0 1 1 0 0 | * * * * 240 * * * * * * | 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 | 0 0 0 0 1 1 1 0 0 0 ..oo.....3..oo.....5..oo.....&#x & | 0 0 1 1 0 | * * * * * 120 * * * * * | 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 | 0 0 0 0 1 0 2 0 0 0 ......... ...x..... ......... & | 0 0 0 2 0 | * * * * * * 120 * * * * | 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 | 0 0 0 0 1 0 1 1 1 0 ......... ......... ...x..... & | 0 0 0 2 0 | * * * * * * * 60 * * * | 0 0 0 0 0 0 0 0 0 1 0 0 2 0 1 0 0 | 0 0 0 0 0 0 2 0 0 2 ...oo....3...oo....5...oo....&#x & | 0 0 0 1 1 | * * * * * * * * 240 * * | 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 | 0 0 0 0 0 0 1 0 1 1 ...o.o...3...o.o...5...o.o...&#x | 0 0 0 2 0 | * * * * * * * * * 60 * | 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 2 0 | 0 0 0 0 0 0 0 1 2 2 ......... ......... ....x.... | 0 0 0 0 2 | * * * * * * * * * * 60 | 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 | 0 0 0 0 0 0 2 0 0 1 ------------------------------------+------------------+-----------------------------------------+------------------------------------------------------------+----------------------------- ......... o........5x........ & | 5 0 0 0 0 | 5 0 0 0 0 0 0 0 0 0 0 | 24 * * * * * * * * * * * * * * * * | 1 0 0 1 0 0 0 0 0 0 ox....... ......... .........&#x & | 1 2 0 0 0 | 0 2 1 0 0 0 0 0 0 0 0 | * 120 * * * * * * * * * * * * * * * | 0 1 1 0 0 0 0 0 0 0 ......... ......... xx.......&#x & | 2 2 0 0 0 | 1 2 0 1 0 0 0 0 0 0 0 | * * 120 * * * * * * * * * * * * * * | 0 0 1 1 0 0 0 0 0 0 .x.......3.o....... ......... & | 0 3 0 0 0 | 0 0 3 0 0 0 0 0 0 0 0 | * * * 40 * * * * * * * * * * * * * | 0 1 0 0 1 0 0 0 0 0 .x....... ......... .x....... & | 0 4 0 0 0 | 0 0 2 2 0 0 0 0 0 0 0 | * * * * 60 * * * * * * * * * * * * | 0 0 1 0 0 1 0 0 0 0 ......... .o.......5.x....... & | 0 5 0 0 0 | 0 0 0 5 0 0 0 0 0 0 0 | * * * * * 24 * * * * * * * * * * * | 0 0 0 1 0 0 1 0 0 0 .xo...... ......... .........&#x & | 0 2 1 0 0 | 0 0 1 0 2 0 0 0 0 0 0 | * * * * * * 120 * * * * * * * * * * | 0 0 0 0 1 1 0 0 0 0 ......... .ofx..... .........&#x & | 0 1 2 2 0 | 0 0 0 0 2 2 1 0 0 0 0 | * * * * * * * 120 * * * * * * * * * | 0 0 0 0 1 0 1 0 0 0 ......... ......... .xo......&#x & | 0 2 1 0 0 | 0 0 0 1 2 0 0 0 0 0 0 | * * * * * * * * 120 * * * * * * * * | 0 0 0 0 0 1 1 0 0 0 ......... ......... ..ox.....&#x & | 0 0 1 2 0 | 0 0 0 0 0 2 0 1 0 0 0 | * * * * * * * * * 60 * * * * * * * | 0 0 0 0 0 0 2 0 0 0 ...o.....3...x..... .........&#x & | 0 0 0 3 0 | 0 0 0 0 0 0 3 0 0 0 0 | * * * * * * * * * * 40 * * * * * * | 0 0 0 0 1 0 0 1 0 0 ......... ...xo.... .........&#x & | 0 0 0 2 1 | 0 0 0 0 0 0 1 0 2 0 0 | * * * * * * * * * * * 120 * * * * * | 0 0 0 0 0 0 1 0 1 0 ......... ......... ...xx....&#x & | 0 0 0 2 2 | 0 0 0 0 0 0 0 1 2 0 1 | * * * * * * * * * * * * 120 * * * * | 0 0 0 0 0 0 1 0 0 1 ......... ...x.x... .........&#x | 0 0 0 4 0 | 0 0 0 0 0 0 2 0 0 2 0 | * * * * * * * * * * * * * 60 * * * | 0 0 0 0 0 0 0 1 1 0 ......... ......... ...x.x...&#x | 0 0 0 4 0 | 0 0 0 0 0 0 0 2 0 2 0 | * * * * * * * * * * * * * * 30 * * | 0 0 0 0 0 0 0 0 0 2 ...ooo...3...ooo...5...ooo...&#x | 0 0 0 2 1 | 0 0 0 0 0 0 0 0 2 1 0 | * * * * * * * * * * * * * * * 120 * | 0 0 0 0 0 0 0 0 1 1 ......... ....o....5....x.... | 0 0 0 0 5 | 0 0 0 0 0 0 0 0 0 0 5 | * * * * * * * * * * * * * * * * 12 | 0 0 0 0 0 0 2 0 0 0 ------------------------------------+------------------+-----------------------------------------+------------------------------------------------------------+----------------------------- o........3o........5x........ & ♦ 20 0 0 0 0 | 30 0 0 0 0 0 0 0 0 0 0 | 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2 * * * * * * * * * ox.......3oo....... .........&#x & ♦ 1 3 0 0 0 | 0 3 3 0 0 0 0 0 0 0 0 | 0 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | * 40 * * * * * * * * ox....... ......... xx.......&#x & ♦ 2 4 0 0 0 | 1 4 2 2 0 0 0 0 0 0 0 | 0 2 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | * * 60 * * * * * * * ......... oo.......5xx.......&#x & ♦ 5 5 0 0 0 | 5 5 0 5 0 0 0 0 0 0 0 | 1 0 5 0 0 1 0 0 0 0 0 0 0 0 0 0 0 | * * * 24 * * * * * * .xoo.....3.ofx..... .........&#xt & ♦ 0 3 3 3 0 | 0 0 3 0 6 3 3 0 0 0 0 | 0 0 0 1 0 0 3 3 0 0 1 0 0 0 0 0 0 | * * * * 40 * * * * * .xo...... ......... .xo......&#x & ♦ 0 4 1 0 0 | 0 0 2 2 4 0 0 0 0 0 0 | 0 0 0 0 1 0 2 0 2 0 0 0 0 0 0 0 0 | * * * * * 60 * * * * ......... .ofxo....5.xoxx....&#xt & ♦ 0 5 5 10 5 | 0 0 0 5 10 10 5 5 10 0 5 | 0 0 0 0 0 1 0 5 5 5 0 5 5 0 0 0 1 | * * * * * * 24 * * * ...o.o...3...x.x... .........&#x ♦ 0 0 0 6 0 | 0 0 0 0 0 0 6 0 0 3 0 | 0 0 0 0 0 0 0 0 0 0 2 0 0 3 0 0 0 | * * * * * * * 20 * * ......... ...xox... .........&#x ♦ 0 0 0 4 1 | 0 0 0 0 0 0 2 0 4 2 0 | 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 2 0 | * * * * * * * * 60 * ......... ......... ...xxx...&#x ♦ 0 0 0 4 2 | 0 0 0 0 0 0 0 2 4 2 1 | 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 2 0 | * * * * * * * * * 60
© 2004-2024 | top of page |