Acronym | ... | |||||||||||||||||||||||||||||||||
Name |
a3b4c, general variation of great rhombicuboctahedron | |||||||||||||||||||||||||||||||||
Circumradius | sqrt[2a2+4b2+3c2+4ab+(2ac+4bc)sqrt(2)]/2 | |||||||||||||||||||||||||||||||||
Vertex layers |
| |||||||||||||||||||||||||||||||||
Lace tower and approx. ASCII-art |
b a b o---o---o---o - a3b c / B c | a | c B \ c height = c/sqrt(3) o-------o---o-------o - a3B b / B b / C \ b B \ b height = bq/sqrt(3) o-------o-------o-------o - C3B c | b c/ \a b a/ \c b | c height = c/sqrt(3) resp. height = aq/sqrt(3) o---o o---o o---o - b3X + X3b [comp. only if c=aq, else 2 layers: heigth = |c-aq|/sqrt(3)] a | C a\ /c B c\ /a C | a height = aq/sqrt(3) resp. height = c/sqrt(3) o-----o-----------o-----o - B3C b \ a |b B b| a / b height = bq/sqrt(3) o---o-----------o---o - B3a c \ \c c/ / c height = c/sqrt(3) o---o---o---o - b3a a b a | |||||||||||||||||||||||||||||||||
c b c b c o---o---o---o - b4c a / C a | c | a C \ a height = a/sqrt(2) c o-------o---o-------o c - C4c b | a b / A \ b a | b height = b/sqrt(2) A o---o-----------o---o A - a4A c | a | c A c | a | c height = c A o---o-----------o---o A - a4A b | C b \ c / b C | b height = b/sqrt(2) c o-------o---o-------o c - C4c a \ a | | a / a height = a/sqrt(2) c o---o---o---o c - b4c b c b | ||||||||||||||||||||||||||||||||||
Coordinates | (c/2, (bq+c)/2, (aq+bq+c)/2) & all permutations & all changes of sign | |||||||||||||||||||||||||||||||||
General of army | (is itself convex) | |||||||||||||||||||||||||||||||||
Colonel of regiment | (is itself locally convex) | |||||||||||||||||||||||||||||||||
Face vector | 48, 72, 26 | |||||||||||||||||||||||||||||||||
Especially |
| |||||||||||||||||||||||||||||||||
Confer |
|
Incidence matrix according to Dynkin symbol
a3b4c (a ≠ 0, b ≠ 0, c ≠ 0 : general girco-variant) . . . | 48 | 1 1 1 | 1 1 1 ------+----+----------+------- a . . | 2 | 24 * * | 1 1 0 a . b . | 2 | * 24 * | 1 0 1 b . . c | 2 | * * 24 | 0 1 1 c ------+----+----------+------- a3b . | 6 | 3 3 0 | 8 * * a . c | 4 | 2 0 2 | * 12 * . b4c | 8 | 0 4 4 | * * 6
Bb3aa3bB&#zc → height = 0, where: B = b+cq = b+c sqrt(2) (pseudo), same as general girco-variant a3b4c) o.3o.3o. & | 48 | 1 1 1 | 1 1 1 ---------------+----+----------+------- .. a. .. & | 2 | 24 * * | 1 0 1 a .. .. b. & | 2 | * 24 * | 1 1 0 b oo3oo3oo&#c | 2 | * * 24 | 0 1 1 c ---------------+----+----------+------- .. a.3b. & | 6 | 3 3 0 | 8 * * Bb .. bB&#zc | 8 | 0 4 4 | * 6 * .. aa ..&#c | 4 | 2 0 2 | * * 12
a3b4o (a ≠ 0, b ≠ 0, c = 0 : general toe-variant) . . . | 24 | 1 2 | 2 1 ------+----+-------+---- a . . | 2 | 12 * | 2 0 a . b . | 2 | * 24 | 1 1 b ------+----+-------+---- a3b . | 6 | 3 3 | 8 * . b4o | 4 | 0 4 | * 6
b3a3b (same as general toe-variant a3b4o) . . . | 24 | 2 1 | 2 1 ---------+----+-------+---- b . . & | 2 | 24 * | 1 1 b . a . | 2 | * 12 | 2 0 a ---------+----+-------+---- b3a . & | 6 | 3 3 | 8 * b . b | 4 | 4 0 | * 6
a3o4c (a ≠ 0, b = 0, c ≠ 0 : general sirco-variant) . . . | 24 | 2 2 | 1 2 1 ------+----+-------+------- a . . | 2 | 24 * | 1 1 0 a . . c | 2 | * 24 | 0 1 1 c ------+----+-------+------- a3o . | 3 | 3 0 | 8 * * a . c | 4 | 2 2 | * 12 * . o4c | 4 | 0 4 | * * 6
Co3aa3oC&#zc → height = 0, where: C = cq = c sqrt(2) (pseudo), same as general sirco-variant a3o4c) o.3o.3o. & | 24 | 2 2 | 1 1 2 ---------------+----+-------+------- .. a. .. & | 2 | 24 * | 1 0 1 a oo3oo3oo&#c | 2 | * 24 | 0 1 1 c ---------------+----+-------+------- .. a.3o. & | 3 | 3 0 | 8 * * Co .. oC&#zc | 4 | 0 4 | * 6 * .. aa ..&#c | 4 | 2 2 | * * 12
o3b4c (a = 0, b ≠ 0, c ≠ 0 : general tic-variant) . . . | 24 | 2 1 | 1 2 ------+----+-------+---- . b . | 2 | 24 * | 1 1 b . . c | 2 | * 12 | 0 2 c ------+----+-------+---- o3b . | 3 | 3 0 | 8 * . b4c | 8 | 4 4 | * 6
Bb3oo3bB&#zc → height = 0, where: B = b+cq = b+c sqrt(2) (pseudo), same as general tic-variant o3b4c) o.3o.3o. & | 24 | 2 1 | 1 2 ---------------+----+-------+---- .. .. b. & | 2 | 24 * | 1 1 b oo3oo3oo&#c | 2 | * 12 | 0 2 c ---------------+----+-------+---- .. o.3b. & | 3 | 3 0 | 8 * Bb .. bB&#zc | 8 | 4 4 | * 6
o3o4c (a = b = 0, c ≠ 0 : c-scaled cube o3o4c) . . . | 8 | 3 | 3 ------+---+----+-- . . c | 2 | 12 | 2 c ------+---+----+-- . o4c | 4 | 4 | 6
Co3oo3oC&#zc → height = 0, where: C = cq = c sqrt(2) (pseudo), same as c-scaled cube o3o4c) o.3o.3o. & | 8 | 3 | 3 ---------------+---+----+-- oo3oo3oo&#c | 2 | 12 | 2 c ---------------+---+----+-- Co .. oC&#zc | 4 | 4 | 6
© 2004-2024 | top of page |