| Acronym | ... | |||||||||||||||||||||||||||||||||
| Name |
a3b4c, general variation of great rhombicuboctahedron | |||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||
|
VRML (change symmetry to [3,4] ) |
| |||||||||||||||||||||||||||||||||
| Circumradius | sqrt[2a2+4b2+3c2+4ab+(2ac+4bc)sqrt(2)]/2 | |||||||||||||||||||||||||||||||||
| Vertex layers |
| |||||||||||||||||||||||||||||||||
|
Lace tower and approx. ASCII-art |
b a b
o---o---o---o - a3b
c / B c | a | c B \ c height = c/sqrt(3)
o-------o---o-------o - a3B
b / B b / C \ b B \ b height = bq/sqrt(3)
o-------o-------o-------o - C3B
c | b c/ \a b a/ \c b | c height = c/sqrt(3) resp. height = aq/sqrt(3)
o---o o---o o---o - b3X + X3b [comp. only if c=aq, else 2 layers: heigth = |c-aq|/sqrt(3)]
a | C a\ /c B c\ /a C | a height = aq/sqrt(3) resp. height = c/sqrt(3)
o-----o-----------o-----o - B3C
b \ a |b B b| a / b height = bq/sqrt(3)
o---o-----------o---o - B3a
c \ \c c/ / c height = c/sqrt(3)
o---o---o---o - b3a
a b a
| |||||||||||||||||||||||||||||||||
c b c b c
o---o---o---o - b4c
a / C a | c | a C \ a height = a/sqrt(2)
c o-------o---o-------o c - C4c
b | a b / A \ b a | b height = b/sqrt(2)
A o---o-----------o---o A - a4A
c | a | c A c | a | c height = c
A o---o-----------o---o A - a4A
b | C b \ c / b C | b height = b/sqrt(2)
c o-------o---o-------o c - C4c
a \ a | | a / a height = a/sqrt(2)
c o---o---o---o c - b4c
b c b
| ||||||||||||||||||||||||||||||||||
| Coordinates | (c/2, (bq+c)/2, (aq+bq+c)/2) & all permutations & all changes of sign | |||||||||||||||||||||||||||||||||
| General of army | (is itself convex) | |||||||||||||||||||||||||||||||||
| Colonel of regiment | (is itself locally convex) | |||||||||||||||||||||||||||||||||
| Face vector | 48, 72, 26 | |||||||||||||||||||||||||||||||||
| Especially |
| |||||||||||||||||||||||||||||||||
| Confer |
| |||||||||||||||||||||||||||||||||
Incidence matrix according to Dynkin symbol
a3b4c (a ≠ 0, b ≠ 0, c ≠ 0 : general girco-variant) . . . | 48 | 1 1 1 | 1 1 1 ------+----+----------+------- a . . | 2 | 24 * * | 1 1 0 a . b . | 2 | * 24 * | 1 0 1 b . . c | 2 | * * 24 | 0 1 1 c ------+----+----------+------- a3b . | 6 | 3 3 0 | 8 * * a . c | 4 | 2 0 2 | * 12 * . b4c | 8 | 0 4 4 | * * 6
((Bb3aa3bB))&#zc → height = 0,
where: B = b+cq = b+c sqrt(2) (pseudo),
same as general girco-variant a3b4c)
o.3o.3o. & | 48 | 1 1 1 | 1 1 1
-------------------+----+----------+-------
.. a. .. & | 2 | 24 * * | 1 0 1 a
.. .. b. & | 2 | * 24 * | 1 1 0 b
oo3oo3oo &#c | 2 | * * 24 | 0 1 1 c
-------------------+----+----------+-------
.. a.3b. & | 6 | 3 3 0 | 8 * *
((Bb .. bB))&#zc | 8 | 0 4 4 | * 6 *
.. aa .. &#c | 4 | 2 0 2 | * * 12
a3b4o (a ≠ 0, b ≠ 0, c = 0 : general toe-variant) . . . | 24 | 1 2 | 2 1 ------+----+-------+---- a . . | 2 | 12 * | 2 0 a . b . | 2 | * 24 | 1 1 b ------+----+-------+---- a3b . | 6 | 3 3 | 8 * . b4o | 4 | 0 4 | * 6
b3a3b (same as general toe-variant a3b4o) . . . | 24 | 2 1 | 2 1 ---------+----+-------+---- b . . & | 2 | 24 * | 1 1 b . a . | 2 | * 12 | 2 0 a ---------+----+-------+---- b3a . & | 6 | 3 3 | 8 * b . b | 4 | 4 0 | * 6
a3o4c (a ≠ 0, b = 0, c ≠ 0 : general sirco-variant) . . . | 24 | 2 2 | 1 2 1 ------+----+-------+------- a . . | 2 | 24 * | 1 1 0 a . . c | 2 | * 24 | 0 1 1 c ------+----+-------+------- a3o . | 3 | 3 0 | 8 * * a . c | 4 | 2 2 | * 12 * . o4c | 4 | 0 4 | * * 6
((Co3aa3oC))&#zc → height = 0,
where: C = cq = c sqrt(2) (pseudo),
same as general sirco-variant a3o4c)
o.3o.3o. & | 24 | 2 2 | 1 1 2
-------------------+----+-------+-------
.. a. .. & | 2 | 24 * | 1 0 1 a
oo3oo3oo &#c | 2 | * 24 | 0 1 1 c
-------------------+----+-------+-------
.. a.3o. & | 3 | 3 0 | 8 * *
((Co .. oC))&#zc | 4 | 0 4 | * 6 *
.. aa .. &#c | 4 | 2 2 | * * 12
o3b4c (a = 0, b ≠ 0, c ≠ 0 : general tic-variant) . . . | 24 | 2 1 | 1 2 ------+----+-------+---- . b . | 2 | 24 * | 1 1 b . . c | 2 | * 12 | 0 2 c ------+----+-------+---- o3b . | 3 | 3 0 | 8 * . b4c | 8 | 4 4 | * 6
((Bb3oo3bB))&#zc → height = 0,
where: B = b+cq = b+c sqrt(2) (pseudo),
same as general tic-variant o3b4c)
o.3o.3o. & | 24 | 2 1 | 1 2
-------------------+----+-------+----
.. .. b. & | 2 | 24 * | 1 1 b
oo3oo3oo &#c | 2 | * 12 | 0 2 c
-------------------+----+-------+----
.. o.3b. & | 3 | 3 0 | 8 *
((Bb .. bB))&#zc | 8 | 4 4 | * 6
o3o4c (a = b = 0, c ≠ 0 : c-scaled cube o3o4c) . . . | 8 | 3 | 3 ------+---+----+-- . . c | 2 | 12 | 2 c ------+---+----+-- . o4c | 4 | 4 | 6
((Co3oo3oC))&#zc → height = 0,
where: C = cq = c sqrt(2) (pseudo),
same as c-scaled cube o3o4c)
o.3o.3o. & | 8 | 3 | 3
-------------------+---+----+--
oo3oo3oo &#c | 2 | 12 | 2 c
-------------------+---+----+--
((Co .. oC))&#zc | 4 | 4 | 6
© 2004-2026 | top of page |