Acronym | 2n/2-p |
TOCID symbol | t(n/2)P |
Name | 2n-gonal prism of winding number 2 |
Circumradius | sqrt[1/4+1/(4 sin2(π/n))] |
Vertex figure | [42,2n/2] |
Snub derivation |
(type A) (type B) |
General of army | n-p |
Colonel of regiment | n-p |
Face vector | 4n, 6n, 2n+2 |
Especially | 2trip (n=3) 2cube (n=4) 2pip (n=5) |
Confer |
|
Looks like a compound of 2 coincident n-gonal prisms (n-p), and indeed all elements (but the Grünbaumian bases) coincide by pairs.
Incidence matrix according to Dynkin symbol
x xn/2x (n>2) . . . | 4n | 1 1 1 | 1 1 1 --------+----+----------+------ x . . | 2 | 2n * * | 1 1 0 . x . | 2 | * 2n * | 1 0 1 . . x | 2 | * * 2n | 0 1 1 --------+----+----------+------ x x . | 4 | 2 2 0 | n * * x . x | 4 | 2 0 2 | * n * . xn/2x | 2n | 0 n n | * * 2
x2βnx (n>2) both( . . . ) | 4n | 1 1 1 | 1 1 1 --------------+----+----------+------ both( x . . ) | 2 | 2n * * | 0 1 1 both( . . x ) | 2 | * 2n * | 1 1 0 sefa( . βnx ) | 2 | * * 2n | 1 0 1 --------------+----+----------+------ . βnx ♦ 2n | 0 n n | 2 * * both( x . x ) | 4 | 2 2 0 | * n * sefa( x2βnx ) | 4 | 2 0 2 | * * n starting figure: x xnx
β2βnx (n>2) both( . . . ) | 4n | 1 1 1 | 1 2 --------------+----+----------+----- both( s2s ) | 2 | 2n * * | 0 2 both( . . x ) | 2 | * 2n * | 1 1 sefa( . βnx ) | 2 | * * 2n | 1 1 --------------+----+----------+----- βnx ♦ 2n | 0 n n | 2 * sefa( β2βnx ) | 4 | 2 1 1 | * 2n starting figure: x xnx
xxn/2xx&#x (n>2) → height = 1
({2n/2} || {2n/2})
o.n/2o. | 2n * | 1 1 1 0 0 | 1 1 1 0
.on/2.o | * 2n | 0 0 1 1 1 | 0 1 1 1
-----------+-------+------------+--------
x. .. | 2 0 | n * * * * | 1 1 0 0
.. x. | 2 0 | * n * * * | 1 0 1 0
oon/2oo&#x | 1 1 | * * 2n * * | 0 1 1 0
.x .. | 0 2 | * * * n * | 0 1 0 1
.. .x | 0 2 | * * * * n | 0 0 1 1
-----------+-------+------------+--------
x.n/2x. | 2n 0 | n n 0 0 0 | 1 * * *
xx ..&#x | 2 2 | 1 0 2 1 0 | * n * *
.. xx&#x | 2 2 | 0 1 2 0 1 | * * n *
.xn/2.x | 0 2n | 0 0 0 n n | * * * 1
© 2004-2024 | top of page |