Acronym | disco |
Name |
disnub cuboctahedron, compound of 2 snic |
© | |
Vertex figure | [34,4] |
Dihedral angles
(at margins) |
|
External links |
Both, the octahedral triangles and the (cubical) squares coincide by their face planes pairwise. So either all are considered separately (type A), or triangle pairs are considered as (rotated) compounds while squares are considered separately (type B), or conversely square pairs are considered as (rotated) compounds while triangles are considered separately (type C), or both are considered as compounds (type D).
Incidence matrix according to Dynkin symbol
β3β4β (Type A) both( . . . ) | 48 | 2 2 2 | 1 1 3 || 1 --------------+----+----------+----------++-- both( s 2 s ) | 2 | 24 * * | 0 0 2 || 1 sefa( β3β . ) | 2 | * 48 * | 1 0 1 || 1 sefa( . β4β ) | 2 | * * 48 | 0 1 1 || 1 --------------+----+----------+----------++-- both( s3s . ) | 3 | 0 3 0 | 16 * * || 1 both( . s4s ) | 4 | 0 0 4 | * 12 * || 1 sefa( β3β4β ) | 3 | 1 1 1 | * * 48 || 1 --------------+----+----------+----------++-- both( s3s4s ) ♦ 24 | 12 24 24 | 8 6 24 || 2
β3β4β (Type B) both( . . . ) | 48 | 2 2 2 | 1 1 3 || 1 --------------+----+----------+---------++-- both( s 2 s ) | 2 | 24 * * | 0 0 2 || 1 sefa( β3β . ) | 2 | * 48 * | 1 0 1 || 1 sefa( . β4β ) | 2 | * * 48 | 0 1 1 || 1 --------------+----+----------+---------++-- β3β . | 6 | 0 6 0 | 8 * * || 2 both( . s4s ) | 4 | 0 0 4 | * 12 * || 1 sefa( β3β4β ) | 3 | 1 1 1 | * * 48 || 1 --------------+----+----------+---------++-- both( s3s4s ) ♦ 24 | 12 24 24 | 8 6 24 || 2
β3β4β (Type C) both( . . . ) | 48 | 2 2 2 | 1 1 3 || 1 --------------+----+----------+---------++-- both( s 2 s ) | 2 | 24 * * | 0 0 2 || 1 sefa( β3β . ) | 2 | * 48 * | 1 0 1 || 1 sefa( . β4β ) | 2 | * * 48 | 0 1 1 || 1 --------------+----+----------+---------++-- both( s3s . ) | 3 | 0 3 0 | 16 * * || 1 . β4β | 8 | 0 0 8 | * 6 * || 2 sefa( β3β4β ) | 3 | 1 1 1 | * * 48 || 1 --------------+----+----------+---------++-- both( s3s4s ) ♦ 24 | 12 24 24 | 8 6 24 || 2
β3β4β (Type D) both( . . . ) | 48 | 2 2 2 | 1 1 3 || 1 --------------+----+----------+--------++-- both( s 2 s ) | 2 | 24 * * | 0 0 2 || 1 sefa( β3β . ) | 2 | * 48 * | 1 0 1 || 1 sefa( . β4β ) | 2 | * * 48 | 0 1 1 || 1 --------------+----+----------+--------++-- β3β . | 6 | 0 6 0 | 8 * * || 2 . β4β | 8 | 0 0 8 | * 6 * || 2 sefa( β3β4β ) | 3 | 1 1 1 | * * 48 || 1 --------------+----+----------+--------++-- both( s3s4s ) ♦ 24 | 12 24 24 | 8 6 24 || 2
© 2004-2025 | top of page |